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CHAPTER 1

STATEMENT OF THE PROBLEM STUDIED

Many time dependent physical phenomena are characterized by
nonlinear parabolic equations, the solution of which 1is character-
ized by a sharp front, sometimes a discontinuity, propagating
through the solution domain. Among problems of this type are non-
linear convective diffusion problems with dominant convective terms,
or Stefan type problems such as the flow of fluids through porous
media or the melting and freezing of ice. Such problems are dif-
ficult mathematically and numerically because of the poor regularity
of the solutions. Moreover, the mathematical theory underlying these
problems and their approximations is very much incomplete.

Toward resolving some of these issues, a three-year project was
initiated in 1976, designed to study not only the qualitative
features of solutions of nonlinear problems of this type, but also
in developing numerical schemes for solving such problems. Since
then the research has basically taken two somewhat distinct directionms.
irst, a study of the use of variational inequalities as a means of
formulating time-dependent Stefan problems was initiated. Classes of
problems considered here include the one-phase and two~phase Stefan
problems encountered in porous media applications and, in particular,
problems of ablation of metals and freezing and thawing of soils.

A variety of finite element schemes were developed and studied for
these problems, some of which proved to be very effective. Using

variational inequalities as a basis, some new numerical methods were
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developed for two dimensional, two-phase Stefan problems with time
dependent boundary conditions. A variety of example problems was
solved, and a method was prcduced which seems to be very effective.
Some of the results of this portion of the study have appeared or
will appear soon in the literature. The analysis of the one-phase
Stefan problem was first completed, including not only the identi-
fication of effective numerical schemes but also the development

of a priori error estimates for finite element approximations. The
studies led to information on the qualitative and quantitative
behavior of the solution and its regularity, the behavior of the
error, and criteria for the selection of trial functions for finite
element approximations. In these studies, Stefan problems were
considered without convective terms.

At the end of the first year of the project it became clear that
to model realistically certain phenomena characterized by parabolic
equations and the propagation of fronts, it would be more appropriate
to include convective terms in the formulation. Indeed, the
presence of dominant convective terms in convection~diffusion pro-
cesses is known to lead to solutions with fronts and to notorious
numerical difficulties. Toward resolving some of these issues, a
theoretical analysis was initiated to study the behavior of highly
non-linear parabolic equations which contained convective type terms.
Here a study of the theory of evolution problems characterized by

pseudo-monotone operators was performed. Existence theorems,

Py




uniqueness theorems, regularity theorems, and stability results
were derived for operators of the form A(u) + c|u|q|Vu|r s where
q and r take on values appropriate to make the operator pseudo-
monotone, and A is a non-linear monotone operator. Existence
theorems using methods of elliptic regularization were also
investigated. Finally, a theory of Faedo-Galerkin approximations
and semi-discrete Galerkin approximations was devised and applied
to finite element approximations of these equations. A priori
error estimates were obtained and guidelines for the development
of appropriate numerical methods were established.

In recent months, it was discovered that the qualitative
analysis of nonlinear parbolic problems could be substantially
generalized to include the effects of degenerate coefficients and
to model such complex phenomena as two-temperature heat condition,
with degenerate equations and nonlinear convective and diffusion

terms, plus the effects of free boundaries. This work has been

completed only recently and required considerable effort. Professors

Oden, Showalter, and Kikuchi worked on this phase of the project,

and the recent work of Showalter on nonlinear evolution equations has

proved to be invaluable. We feel that a broad theoretical basis
has now been established for further work on approximations and the
numerical analysis of this class of problem.

The logical extension of this work will also be the development




of numerical algorithms for the study of degenerate nonlinear con-
vection diffusion problems of the type described above and the
numerical study of representative two-dimensional problems. Some
encouraging preliminary results have already been obtained in

this direction.




CHAPTER II

SUMMARY OF THE MOST IMPORTANT RESULTS

Important results were obtained in four areas:

One: Existence theorems, approximation theorems, a priori

error estimates, numerical schemes, and finally computer codes
were developed for the analysis of one~ and two-dimensional, one-
and two-phase Stefan problems characterized by variational inequal-
ities.

Two: Existence theorems, uniqueness theorems, theorems on the
stability and asymptotic stability of solutions, and regularity of

. solutions were developed for a large class of non~linear, convective

diffusion problems characterized by pseudo-monotone operators.

Three: A priori error estimates for Galerkin and Faedo-Galerkin
approximations (defined, in general, by finite element methods) were
established for nonlinear convection diffusion problems involving
general pseudomonotone operators.

Four: Existence theorems were obtained for a large class of
nonlinear, degenerate evolution equations with solutions involving

free boundaries. Applications to porous media and two-phase Stephan

problems were completed.
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APPENDIX A

A One~Phase Multi-Dimensional Stefan Problem by

the Method of Variational Inequalities




7. TECHNICAL DISCUSSIONS (APPENDLCES)

Appendix A

A One-Phase Multi-Dimensional Stefan Problem by

Thé Method of Variational Inequalities

1. Introduction

Stefan's problem has been considered by many authors since
STEFAN [1) formulated in 1891 his mathematical model of the phenomena of
a freezing of soils, One- and two-phase Stefan problems have been investi-
gated by KAMENOMONSTSKAJA [1], OLEINIK [1], FRIEDMAN (1], and others. Vari-
ous numerical procedures have been developed by DOUGLAS and GALLIE (1],
JAMET and BONNEROT [1], and others. Hewever, while most existing methods
are applicable for one-dimensional problems, not all are extendable to
multi-dimensional problems, since many are based on special characteristics
of one-dimensional case. We mention here some typical methods.

(1) After discretization with respect to the space variable,

the n-th time increment At {s obtained by the "Stefan" condition,

dL _
£ rle Tgrad & ] on the frozen front

g0 that the following nodal point becomes frozen by the condition
2 = -~ [srad On—lm

(2) By the Stefan condition, the location L™ of the frozen
front is obtained at the time t = n At through the formula
. n-1
s B Yo = - [gla(l 0 )
and then the domain of ice is discretfzed by appropriate finite element or

difference methods. Here ¢ is the latent heat, L 1s the position of




variational inequalities is a problem in which the dependent variable is

domain without iteration. The importance of this formulation is that

the frozen front, 0 is the temperature field, and [ ¢ ] denotes
the difference of the left value and right value on the frozen front.

The first method seems to be possible only for one dimensional
problems. The second method is more general, but it becomes difficult
for the case in which many disjoint freezing parts exist. In many
problems, several frozen fronts may occur simultaneously and one frozen

front may grow until it intersects another. Such phenomena are difficult

to model on the discretized domain at each time step.

The formulation introduced by DUVAULT {1] enables us to re-
solve the above difficulties, and has the structure of a strict mathe-
matical analysis. That is, after a special transformation from the

temperature field to the freezing index, the problem formulated by the

defined on the whole domain. Moreover, the freezing index u(x) is
expected to be continuocusly diiferentiable on the whole domain; that {is,
there is no discontinuity of grad u on the frozen front, while grad 6

is discontinuous there. Thus, the problem can be solved within a fixed

the unfrozen part is identificed with the portion where the freezing index
remains zero. That ig, if we can obtain numerical values of the freezing
index, frozen and unfrozen parts can be distinguisehed by the value of
u .

The special transformation and the Stefan condition restrict

the freezing index u to be non-positive on the whole domain. This leads




us to the inequation formulation instead of usual weak forms. This inequa-
tion can be solved by appropriate optimization techniques; for example,

the projectional S.0.R. method, a penalty method, etc. The formulation by

variational inequalities due to DUVAULT is not only powerful for its compu-
tational aspects but also well-posed for mathematical and numerical analyt-
ic aspects, as shown by LIONS [1], JOHNSON [1], CFA and GLOWINSKI {1}, and

so on. These numerical analyses are well-established.

In this paper, we describe the method of variational inequali—
ties {or one-phase Stefan problems and give a computational technique to-
gether with various numerical examples. We compare the results of numeri-
cal experiments with T'IKHONOV's exact solution of a one-dimensfonal case
{1], confirm our error estimates for finite element methods by numerical
gxperiments, and analyze some nontrivial two~dimensional one-phase Stefan

problems.

2. Formulation of One Phase Stefan Problem

2.1. Mathematical Model. Let D C:]Rn (n =1,2,3) be an open domain

whose subset § defines the frozen portion. Let T be the boundary of
D. On rc negative temperature g(t) 1is prescribed as a function of
time (a Dirichlet boundary condition), and on rc we assume that the temp-

(a

erature 6 maintains a valuc of zero. The flux is prescribed on PF
Neumann boundary coundition). ro is the interface of ice and water which
moves with time t . The function t = S(x) defines the time when the

water x € D changes to ice. That 18, S5(x) denotes the position of the




-1
interface TO . 1lts inverse relation, x = S "(t) is given by L(t)
Then a mathematical mudel of the one phase Stafan problem is formulated

as follows (see also Fipure 1).

PROBLEM 1: For given g(t) , 0 <t < T, find {S-l(t) » 0(x,t)} such that

—gi = ¥ . (kV0) in Q, (2.1)

t

o = 0 din D-Q,
B(x,t) = g(t) on FG , (2.2)
6(x,t) = 0 on PC (2.3)
30

ad = k 5n °n PF , (2.4)
kve « VS(x) = & on o (2.5)
8(x,0) = 0 in every D. (2.6)

Here ©0(x,t) 1s the temperature, k(x) the thermal diffusivity, a the
constant for the heat radiation, 2% 1is defined as & = LpC where L 1is

the latent heat per unit volume, p the density of the material, and C

the heat capacity. W




The solution of the initial boundary value problem (2.1) -
(2.6) involves two major difficulties. One is that the domain of ice part
is unknown. Another is that the gradient of the temperature 6 is not

continuous, which makes it difficult to represent the problem variationally.

2.2. Duvaut's Transformation. Let us introduce a special transformation

of 0 into the freezing index u by

t .
u(x,t) = J 0(x,1) dt in 6, u(x,t) =0 4in D -9
S(x)
(2.7)
following DUVAUT (1]. As we mentioned earlicr, the new function u(x,t)
and its first derivatives Fu(x,t) can be shown to be continuous on the
whole domain D , while ¥¢bo(x,t) 1s discontinuous on r0<: D . We have
t
Vu(x,t) = | V0 (x,t) dt in  , Vu(x,t) =0 in D - Q
Is(x)
(2.8)

since the temperature 6 1is zero on Fo , i.e., G(x, S(x)) =0 . This

shows, in fact, that Vu(x, S(x)) = 0 . Furthermore,

t
v o (kVu) = J v« (kvo) dr - 9VS(x) - [k(x)Ve(x, S(x))]
S(x)

Referring to equation (2.1) and (2.5), we have




¢ Vel

This shows that the field ecquation in the ice part £ becomes

183
oty

ot

i

Ve (kVu) + ¢ in Q. 2.9)

And in the water domain D - 1 we have
u = 0 in D-90. (2.10)

It is noteworthy that under the transformation (2.7) the field equation
(2.1) does not change its form with the exception of the force term 2 .
Since the temperature 6 1is below zero degrees centigrade in Q , the

heat potential u is also less than zero:
u(x,t) < 0 in 0 . (2.11)

Combining the above considerations, we have

u%%-V-(kVu)-l] = 0 in D,

u < 0 1in D, (2.12)




We thus obtain a system (2.12) in which the unknown domain Q
does not appear explicitly.
Thus, the initial beundary problem I is transformed in the fol-

lowing form:

PROBLEM II: For given g(t) , 0 <t < T , with

1A

g(0) = 0 , g(t) < 0 for t € (0, , (2.13)

find u(x,t) such that

W Pov ko) -2 = 0 dn oD, (2.14)
u < 0 in D , (2.15)
Vov. v -t <0 oD, (2.16)
u(x,t) = é(t) on FG (2.17)
u(x,t) = 0 on PC (2.18)
u(x,t) = k 2u (x,t) on T (2.19)
on F
u(x,0) = 0 in D (2.20)

REMARK 2.1. Tn the above formulation, we have assumed that the initial
state is saturated by zero degree water, i.e., 06(x,0) = 0 in D . If the
initial state is partially ice and partially 0°C water, then it can be mod-
{fied as follows. Let Qo be the ice domain in D at the initial stage.

The heat potential u 1is now defined by




t
u(x,t) = ( 0(x,t) dr in Q -~ Qo

S(x)

(t
u(x,t) = ! 8x,T1) dt in QO 2.2)!
u(x,t) = 0 in D - Q

This transformation, suggested by FRIEDMAN and KINDERLEHER [1], reduces the
field equation to
du ) '
Yo V « (kVu) + h (2.9)
where h = & in & - Lo and h = Go(x) in Qo , Go(x) is the initial

temperature in Qo . B

REMARK 2.2. In the above formulation, we have only considered the boundery

condition

1f TF is located in the boundary of the domain Qo , defined in REMARK

2.1, we may consider the boundarv condition

Q6
k In = a6 +8 on T (2.4)'

That is, by integrating from O into t 1in time, the condition

.
K

e el B s A kb o L e
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F

(2.19)'. We note that if FF is located in the boundary Qo and Q ,

then (2.19)' cannot be used. M

3. Variational Formulation

The corresponding variational formulation for the problem Il
defined in the previous section, will be derived in this section. Let

(u,v)c be the "inner product' on the domain C , {i.e.,

(u,v)c = f uv dx

C

and let w = ow/ Gt

function such that v < 0 q.e. in D x [0,T], v=0 on rc , V=g on

I‘G ']
of the problem. Then, by integration by parts,

(u, vou), + (kvu, v(v—u)]D - (L, v-u)g

= ({,-V. (ku) - ¢, v-u) +(kVu-n,v-u)aD

D

vhere n = (“1’ n,) 4s the outward normal unit vector on the boundary

= au + Rt on T, (2.19)'

is obtained. The boundary condition (2.19) thus reduced to the condition

Suppose that u satisfies (2.13) - (2.20). Let v be arbitrary

where T 1is a positive real number which indicates the time interval

3D
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of the domain D . From the boundary conditions,
(u, v-u) + (kvu, V(v~u))D - (2, v-u),
= (u—V + (kVu) - &, V)D - (au, V—U)I‘
F
> ~(au, v-u),
‘F
Here we have used the fact that
(L-7 - (RVu) -2, v)) > O
by (2.12) and v < 0 a.e. in b » [0,T] . Thus,
(&, v-—u)D + [kVu, V(v-u))D + (aqu, v _U)FF > (z, v-—u)D
a.e. in [0,T] (3.1)

is obtained. By integration of (3.1) in time [0,T] , we have the varia-

tional problem:

PROBLEM II1I: Find u € K such that

T
Jo {(ﬁ, v--u)D + (kVu, V(v--u))D + (au, v —u)rF} dt

T
> I (%, v-—u)D dt (3.2)
0

for every v € X, with the initial condition wu(x,0) = 0 a.e. in D,

where

b
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X o= vei(om Bm): veiiom Lim)

~

v=4g a.ec.on FG x [0,T] , v=0 a.e. on (3.3)

FC x [0,T} , and v < 0 a.e. in D x [0,T]}

2 2
Here the space L7(0,T; V) means that for every v € L"(0,T; V)

T 2
J Hvll“ de < + =
4] \Y

where ||- is the norm of the space V . B

THEOREM 1. (LIONS [1]), also ICHIKAKA [1]). Suppose that mes (FG) >0 .

Then there exists a unique solution u € K of the variational problem

(3.2) in the set (3.3) such that

e

2, 1 2
€ L°{o,1; (M) N L7(0,T; L7(D))
. 2.
u-V .+ (kVu) € L°(D x [0,T}) . n
. ® 2
The repgularity for the solution u , i.e., u €L (O,T; L (D)) s
enables us to consider the problem:

PROBLEM IV: Find u € K such that

(L‘l, v-u)D + (kVu, \"(v-—u))D + (au, v—u)rF > (e, v--u)D

a.e. in [0,T] (3.4)

for every v €K ,




-

K = {v ¢ Hl(D): v=gy3 a.e.on ', , v=0 a.e, on Fc .
(3.5)
and v <0 a.e., in D}

4. Approximation of Variational Inequality

Since it is almost impossible to obtain analytical solutions
of PROBLEM 1I1 or other equivalent forms except for certain one-dimensional
cases, it is natural that we consider approximate methods. Here we describe
Galerkin approximations in space and discretization by finite difference
schemes in time. We use a finite clement scheme for spatial approximations
since our problem may have an irregular boundary. It can be shown that the
finite element approximation couverges to a solution of the given problem.

Let us consider the finite element discretization of PROBLEM

}V. Let

B(u,v) (kVu, Vv)D + (au, V)I'

F
(u,v) = (U,V)D , and (f,v) = (Q,V)D
Then (3.4) can be written by

{%% , v-u] + B(u, v-u) > (f, v-u) for v €K (4.1)

Let V be defined by

v = (v € HI(D): Vir o é(t), vlr = 0} , (4.2)
G c

Then the admissible set (3.5) can be written

K = {(v€V:v<0 a.e. in D} , (4.3)
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Now, in gencral, we want to construct finite element approxi-
m
mations fn U (D) for some m 0, The following arguments are due to *

ODEN and KIKUCHI {1]. Let Ph be a partition of D into E-subdomains
E

(finite elements) {0 } 7 such that
ce=1
- E =
b 2
) Ue=1 e °
(6.4)
QMY = ¢ for e ¥ f
e f

where ﬁe denotes the closure of ﬂe . Let he = dia (ﬂe) , and h =
max (he) . We consider a finite dimensional subspace of Hm(D) consisting
of polynomials of degree k , k>m > 0 . Let Sl be the finite-dimen~

1

sional subspace of Hm(D) corresponding to each Ph determined by the

above polynomial spaces. We construct Sh so that {t is an approximation
of HT(D) . Let fo = SUP {diameters of all spheres in Qe} . Suppose we

have the condition: there is a constant Cc > 0 such that
h /o < C for every e, 1 <e <E ,
e e — o - -

then we assume there exists a constant C > 0 , which is independent of

u and h , such that

2

fu-n ull o < cn’ Ju|
h Hs Hr

o]
o

-
o
A

< s < min {m,r} , (4.5)
o = min {(k+l1-s, r-s} ,

for every u € Hr(D) . Note that ' Hr(D) -+ HS(D) is a projection of

HE(D) onto Sh(D)c: H™(D) . Then the family {S.} can provide a basis of

h




the real Hilbert space for

UO\l\h Sl(D) is everywhere dense in Hm(D) (4.6)
oax

Let {Kh} be a closed convex subsect of Sy, (Kh(: Sh) which has the fol-

lowing properties: fer all v € KTV , a scquence {vh} in Kh can be

constructed as

v, v €K strongly for h -+ 0,

h

and the weak limit u of the sequence {uh} in K, also belongs to K .
Note that in general X # K.

Now in our one phase Stephan problem, m = 1 (recall (4.2)),
and k =1 is taken. Thus, we sclect piecewise linear polynomials (¢i}

as a basls of an N-dimensional space Sh(D) . Note that in (4.5),

r =k+1 =2 . Thus, Kh can be defined by

N
Ky = tv €82 v= ] vig (vER) ,v| =8|,
i=] I
v .=0 , Y' <0} (4.7)

e

wvhere XG , ZC , ¢ denote the scts of all nodal points on FG , PC and

in D respectively. Note that v|_ < 0 implies v, <0 forall i,

L
1 <1i<N. Then KhCK . For simplicity, we denote

u T u = Z uy ¢j = u1 ¢i (4.8)

where UéK,l}GKh.
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n Space. Let u = ui¢i y Vo= viQi . Substituting these

into (4.1), we h

3ui
My O

where Mij is a

given by

We know that Mi
i and j ,

Ju,
- (v

Miy ot

Discretization i

ave ]

{
-u,) +K  u (v, -u,) -f .- > 0 .
] J) lJul( 3 UJ) J(VJ uj) - (4.9
mass matrix, Kij a stiffness matrix, fJ a force vector
brij = (¢i ’ ¢j) ’
Kij = B(¢i s ¢j) » (4.10)
£, = f,
; ( ¢j)
j and Kij are symmetric by (4.10). Then, interchanging
i<—ui) + l\ijuj(vi -ui) - fi(vi -ui) > 0 (4.11)
|

n Time. For the time direction, we apply a finite difference

scheme:

n+l

i3

+ (1

n

u -u
+
M —J—E——i(vi—ui)+[ﬁK o+l

13 Y3

-0) Kij u;] (vi -ui) - fi(vi-ui) > 0 , (4.12)




i

where u; denotes j-th point value of u = ui¢i € Kh at the time step

n , At the time difference between n+l and n time step, 6 , 0 < 6

<1 is the Crank-Nicoison coefficient. For 6 =1 , (4.12) becomes

v
o

-u.)

Quys vy mup) + By, vy ) = (f, v —uy

1 h

where 93 denotes the implicit finite difference operator such that

un+1 -
n+l1 h h
auh = X . + (4.13)

Inequality (4.12) can be written explicitly in terms of u?+1

as follows:

& u?+l(v{ - fi(vi--u?+l) . (4.14)
Lhere
ﬁij = M /at+ oK,
ﬁij = M/at- (-0 Ky
Ei = fi - %ij u;

For the implicit finite difference scheme (6=1) 1in time and
the linear finite element method in space, the following error estimate has

been established by JOHNSON (1], and also by ODEN and KIKUCHI [1].

o P —
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(Error Estimate). Let u be the solution of (3.4) and {3.5).
Let u: be the solution of the discrete problem (4.12) and (4.7) at the

n~th step in time (6 = 1.0), and let

Suppose that the speed of propagation of the frozen front is of order ¢t°
o 2 . 2 1 e
Suppose that u € L (0,T: H°(D)) , u € L°(0,T; W' (D)) , and u - V + (kVu)

-2 € 1.(0,T: L7(D)) . Then

Max ™12+ o ™2 ae < c? 4+ act
n

woo= min (2, 3+ 2a)

where a , ¢

[}

. n
are constants independent of u and u1 . ]
1

4, Methods of Optimization

The discrete problem (4.14) on the closed convex set (4.7),
defined in the section 3.2, can be solved by the projectional pointwise

$.0.R. method as long as the matrix Kij » (4.14), is positive definite,

c.f. CEA and GLOWINSKI {1].

Projectional §.0.R. Method

(1) n+l o)

Pick up U, 0) € l(h ; for example, set u "= 0

(11) Suppose that k-th iteration u:+1(k)ff Kh is known.

pep

g o oo .




i-1 .

P G0 = -0 0 +u |- ] Ky :*; (k+1)
’ j=1
P - n+1 ~
) i=§+1 TR () + f /K(ii) . (4.15)
(i11) u“*i (k +1) = in (0, ;‘“ (k+0.5))

The iteration factor w 1is chosen so that 0 < w < 2 ., 1Its optimal value
is decided by numerical experiments, while the convergence of the above

algorithm is obtained for 0 < w < 2 , if ﬁ is positive definite.

The convergence of the scheme (4.15) is understood by the

following criterion:

RS VI U“*l <1>l

tolerance = - < € (4.16)

'Z [ v (k+1)’

€e is a positive small number.




{7
'

It is certainly true that there are several other ways to

solve numerically the problem of variational inequality (4.14). For
example, the penalty method, the Lagrange multiplier method, the fixed
point method, and so on. MHerc we merely mention the final forms of the
above methods which wve emploved. Some numerical results of a one dimen-
sional problem using several optimization methods are shown in the follow-

ing section (see Example 5.5).

Fixed point method: Instead of (4.15)2, we have

i=]
n+l gy - ot ooy o n+l .
U g (K+0.5) Uy () - e 321 Kij U g (k4D
+ ? K,, ™o - f (4.15)
- jeg4y 1K 1 F

The step (iii) in (4.15) is also applied. Here ¢ , 0 <p <1, 1s a con-
traction factor which strongly depends on the problem and the discretiza-

tion.

Lagrange multiplier method: We employ this method together with the con-

’ cept of the iteration scheme, i.e.,

i-1

G kA1 = - w0 e |- TR U ke D)
[ ' ’ j__l ’
l .
? R, U )+ £+ q b | /R
. jeia MOkt 17 Y (11)
(6.15)L




g —————

Here we have lagrange multipliers qi defined by
k n+l
+ = -
q, (k+1) Ezl q,() = A Min (o, V.1 (k)

where ) is the iteration factor. The value of ) also depends on the
problem. Note that w , 0 < w < 2 , is the iteration factor, and we do

not need to have the step (iii) in (4.15).

Penalty method: This is a direct application of the penalized equation of

(3.1) defined by
6_ -\ . “‘VLE) +-u:/t = £ a.e. in D x [0,T]
1%

where u: = Sup (O, ue) , and ¢ is a small enough constant. For details,

see LIONS [1]. Then an iteration scheme can be constructed by the follow-

ing form:
e = g ™ 0 4o -iil K., U (k+1)
K, i k, 1 o1 1 ki
Ik, 0o /& (4.15)
T jefa 13 ket ST EEY +p
R i
where K(ii) = K(ii) + Max (0, Si)/c s
n+l N4l
Sg0 7 Yy (k)//lbk,i () |
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5. Numerical Examples

Our numerical scheme obtained in (4.15) is used for fixed
mesh of finite elements and arbitrary time interval (for the stability
of the numerical scheme, it is required to bc small enough if 0 < 8 <1/2
is used in (4.12)), while other methods, for example, JAMET and BONNEROT
{1], DOUGLAS and CALLIE [1], employ variable meshes at each time step, or
variable time interval 4t for the fixed mesh to obtain the position of
the frozen front using«the Stefan condition. The latter method cén be
applied only for one dimensional problems. Why we can use the fixed mesh
is that the freezing index u and its derivative grad u 1s continuous
on the whole domain including the region of ice, water and the frozen
front, as discussed in Section 2. Thus we can construct the variational

form and its approximation without any restriction of dimension of space.

5.1. One Dimensional Case. We have to check the validity of the formula-

tion of variational inequalities compared with some exact solutions, since
for one dimensional problem analytical solutions are known, see for example,
TIKHONOV [1].

Suppose that the following one dimensional problem is con-

sidered.
%% = il ;z% , x €1][0,1]
8(x,0) = 0 ¥ x € [0,1] ; 1initial condition (5.1)
0(0,t) = =1 ¥ t € R, ;  boundary condition
kVEe « 9S(x) = ¢ on ro ; Stefan condition




s ke at oSO s e . e e o

22

The thermal diffusivity k 1is given by k = KZ . Then following TIKHONOV

[1], the exact solution is obtained by ¥
{ -1 +¢C ¢(x/2u/€ ) , for x < a’t i
3
0(x,t) = { (5.2) ;
L 0 , . for x > ar't

where ¢(x) is the error function, C the coustant given by C = 0(0/2()-1 .
a the constant which determines the frozen front by x = a’/t . ﬁote that
a 1is obtained by solving a traunsceudental cquation.

The exact position of the frozen front is not obtained exactly,
but is obtained approximately by the freezing index.

it is notable that the formulation by variational inequalities
of one phase problem does not require the homogeneity of the material con-
stants k and 2 , while two phase problem does, see KIKUCHI and ICHIKAWA

(11].

Example 5.1. Let us select k¥ =1.0 and £ = 1.0 ¥ x € [0,1] . We use

linear finite elements with the mesh size h

0.1 . The time interval

At is 0.1 uniformly. Then at time t = 0.2 , the numerical results are

compared with the Tikhonov's solutien in Figure 5.1, which gives good

n
agreement. Here the temperature ej at j-th nodal point on n-th time step

n

is approximated as Oj = (u"

uj - un_l)/At . Since the linear finite element

3

is used, the gradient Vu: in i-th element is constant in each element and

? - ug_l)/h . Numerical values of the gradient u: :

are corresponding with the Tikhonov's solution at the center of each element

is obtained by (u

exactly. I




Example 5.2. In the previous example, ten finite elements have becn used
for the discretizaticn, which is too coarse in order to get the position
of the frozen frout properly, while the temperature and the gradient of
the freezing index could be obtalned closely enough to the exact values.
Thus, we compute the same model with fine mesh (h = 0.01 , i.e., 100
elements), and obtain more precise position of the frozen front. These

results are shown in Figure 5.2, a

Example 5.3. The case of non-homogencous domain, i.e., kl = 1.0 for

x € {0,0.3) and k2 = 100 for x € (0.3,1) , is considered. Figure 5.3
designates the difference of the propagation speed of the frozen front
between the homogencous and the non-homopeneous region. Since kl << k2 ’
the front propagates more rapidly in (0.3,1] for the non-homogeneous
case. Even though the values of k1 and k2 are very different, the

projectional S.0.R. method converges within almost the same number of

iterations as the case of uniform material domain. B

5.2. Error Norms. Since the exact solution is known for one dimensional

problem, we can compuce discrete error norms, and observe the correspondence

of {its theoretical estimate given in THEOREM 2.

Example 5.4. The model problem is the same as onc given in Example 5.1,
i.e., with uniform k = £ = 1.0 . 1In Figure 5.4, the results of computa-
tions of error norms are shown. Results indicate that the order of the
error in Hl-notm Is exactly h which agrees with the theoretical esti-

mates and that the order of the error in Lz—norm is hl'6 N
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5.3. Comparison of Several Optimization Schemes. As mentioned in the

previous section, there are several methods to solve the optimization
problem (4.14). Here we compare numerical results of those methods for a
one dimensional steady state preblem.

Suppose thae folloving one dimensional steady state problem:
u K (', (v-w') (3, v-uw) Vv K (5.1)

where K = {v € Hl(ﬂ.l)! vix) ~ 0 a.e. {0 [0,1}, v(0) = 0.75} , and

we choose ¢ =1 , 1Its exact solution is riven by

Example 5.5. ,The domain [0,1] is divided into 20 finite elements. Using
the numerical schemes obtained in Section 4, the optimal values of w , A,

p , etc. for each method are obtained as {ollows:

Projective S.0.R, w = 1.6
Lagrange Multiplier A = 0.04 (using w=1.0)
Fixed Point p = 0.04

It is notable that cach optimal values strongly depend upon the problem

itself. However, A and p may be chosen by the following criterion:




| aiag

o = C - 1/
A,0 c Max(Li/ i)

where C = 0.01 - 0.05 , Ui and f1 the gencralized displacement and
force, respectively, at a certain point.
For the penalty method the parameter ¢ has to be chosen

small enough in order to get more accurate results, but it depends on {ts

discrete element length h , too. The selecting criterion of € may be
1

where h 1is the mesh size (for any space dimension) and C = 10.3 - 10'“

Table 5.1 exhibits the comparison of the results by these
methods via the exact solution. We note that the projective S.0.R., the
fixed point and the penalty methods are controlling the generalized dis-
placement directly, while the Lagrange multiplier method is controlling
the generalized force. According to the results, only the Lagrange multi-
plier method does not give the satisfactory result. FEven though we iterate
400 times, the tolerance is bigger than 1.0P-5 1in the Lagrange multiplier
method.

The projective S.0.R. method is most effective among them in
this problem.

The converging rate 0(c) of the penalty method in Lz-norm as
e » 0 is almost 1.0, as shown in Figure 5.5. However, for e < 10-2 .

a small rate is obtained, which depends on the round off error of finite
element discretization. The number of iterations for convergence of (4.15)
are almost the same (about 40 times), that is, it does depend on ¢ , 1if

€ <1
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3.3. Two Dimensional Case. Since the formulation and the numerical pro-

cedure described earlier are independent of the dimension of the problem,
two dimensional problems can be solved without special considerations.

Here a two dimensional model is examined for At , w , and & in (4.14)
and (4.15). Then the effect of lamping of the mass matrix Mij is dis-

cussed. For the optimization, the projective $S.0.R. method is employed in

the following examples since it is most efficient as shown in Example 5.5.

Example 5.6. The numerical model is shown in Figure 5.6(a). Thi; model is
selected because the two frozen fronts become coupled after some finite
time, so that any other methods might have difficulties to solve this
problem. Suppose that k = 1.0, ¢ = 1.0 and h =1.0 , i.e., the number
of finite elements is 10 x 10 = 100 . The maximum tolerance Ec given
in (4.16) is 1.0E-5 . Let us {ix the above dimensions in the following

examples,

For

At = 0.5 ,
w o= 1.0 , for the projective S.0.R.
6 = 1.0 for time discretization

the numerical results are shown in Figure 5.6(b). n

Example 5.7. Figure 5.7 exhibits the case At = 0.1 at time t = 5.0 ,
which gives us almost the same results as the case At = 0.5 as shown in

Figure 5.6(b). Here 8 = 1.0 and w = 1.0 are used. According to the

- . [
i ~
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results, the time increment At mav not influence the numerical results so

much, if 6 = 1.0 (i.e., {mplicit scheme) is chosen.

Example 5.8. Under the same conditions as in Example 5.6 except the relax-
ation factor w , its affection to converpence is checked. We note that w
should be selected in the ranpge such as 0 < w =+« 2, For ws=10, 1.4,
and 1.8 , the number of iterations is given in Table 5.2 for each w . The
case of w = 1.0, i.e., the projective "Guass-Seidel" method, gives the

fastest convergence. The calculated temperature field 6 1is the same for

any case of w .

Example 5.9. Stability of the numerical scheme (4.14) is checked here for

some Crank-Nicolson's ¢ . Since the matrices Mij and X are constant

1]

for each time step, the results of the linear parabolic problem may be applied;

the characteristic cquation of (4.14) is written as

det PI[(T+e st M lk)n + (-1+ (1-0)At wlik)ie = o (5.3)

where M = Mij , K = Kii , 1 = éij and P 1is the orthogonal transformation

- T -1
associated with M 1K , i.e., P M 'K P reduces to eigenvalues m1 > m2 >

cee> M Then X in (5.3) is obtained by
O

xi = 1 - mi/(l+0 At mi)

for each m, . In order that the scheme (4.14) is stable, it is required

that Max IAII <1 . Clearly Ay o< 1 , so that we must have

(1-~26)at mo< 2 (5.4)

Thus if 60 {s selected between 1/2 and 1, the scheme is unconditionally

stable. However, for 6 < 1/2 the scheme may become unstable. In fact,
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¢ =0.25 and At = 0.5 give an unstable example as shown in Figurc 5.8.

Example 5.10. The effect of lamping of the mass matrix M is discussed.

1]
Let ﬁij be a lamped mass matrix of the consistent mass matrix Mij defined
by
[N
jzl Mij if 1i=3 |,
Mij = 9 (5.5
0 if 14

That is, the non-diagonal terms are added up to its diagonal. It is notable
that some singular frozen fronts at the first time step t = 0.5 are
observed as shown in Figure 5.9(a), which is considered to be a discretiza-.
tjion error. However, such a singular behavior on the frozen front is not
observed if the lamped mass scheme is applied as shown in Figure 5.9(b).
Furthermore, after several time steps are passed, the temperature field
becomes entirely the same in both cases as shown in Figure 5.10. The lamped
mass scheme gives a kind of "smoothing" effect to the solutiomn.

The diagonal terms ﬁii of the lamped mass matrix are always
greater than the diagonal terms ”ii of the consistent mass matrix (where
i 1is not summed); the procedure of lamping always gives more stability

than consistent scheme for 0 « 2 « 1/2 .




6. Conclusion

We have shown the thecry and applications of one phase Stefan
problems using the freezing index. Following DUVAULT [1], the problem
described by the temperature field has been transformed to the variational
inequality in terms of the freezing index. Applying finite element meth-
ods in space and finite difference methods in time, the variational ine-
quality has been discretized into a system of linear inequalities; which
can be solved by optimization methods. 1In this article, four kinds of
methods: the projectional S.0.R. method, the rrojectional fixed point meth-
od, the Lagrange multiplier method, and the penal:v method have been intro-
duced and carefully examined for their speed of convergence using a station-

b ary problem. Along our numerical experiments, the projectional S.0.R.
method is the fastest optimization method among them.

Using the Tikhonov's one dimensional solution, the numerical

results by the variatonal inequality have been compared, and very close
agreement has been obtained. Moreover, using the same one dimensional
example, the convergence of finite element methods has been checked numer-

ically for the case of linear interpolations. Numerical results have agreed

with the theoretical one, again.

Several nontrivial two dimensional problems have been per-
formed, and the choice of At , 6 , and w have been discussed numerically.
Furthermore, the effect of lumping of the mass matrix has been checked.

The Crank-Nicolson's 0 for time integration should be selected between

1/2 and 1. According to numerical experiments, the iteration factor of the
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projectional §.0.R. method w = 1.0 1is recommended. Lumping of the mass

matrix gives smooth frozen fronts at the first few steps of time

integration.
Thus, the formulation of one phase Stefan problems by the freezing
index 1s fairly effective for multi-dimensional problems as shown in our

discussions.
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Y 1.0 1.4 1.8
0.5 3 il 42
1.0 5 13 49
1.5 7 14 49
2.0 8 14 51
2.5 8 14 52
3.0 8 14 52
3.5 8 15 52
4.0 9 15 53
4.5 9 15 53
5.0 9 15 53

Table 5.2 Number of iterations for various w of S.0.R.
(o
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Numerical Methods for Two-Phase Stefan

Problems by Variational Inequalities

APPENDIX B




Appendix B
Numerical Methads for Two=Phase Stefan

~ Problems by Variational Incqualities

1. Introduction

The problem of freezing and thawing of two- and three-dimensional {ce
fields under time-dependent boundary conditions can be modelled as a two-phase
Stefan problem, with the free boundary, representing the interface of ice
and water, unknown a priori. Relatively fcw effective numerical methods have
. been proposed for such problems, and those which attempt to treat the free

boundary by schemes employing a fixed mesh arc seldom given a complete mathe-

T

matical justification.

The present scheme is based on the iheory of Stefan problems using the

freezing index which is obtained by the spectial transformation of the tempera-

~ Fremond (3]. 1ts mathematical basis has been studied by Lions [5] and Aguirre-

t ture field. This theory is first introduced by Duvaut [2], and studied by

} Puente and Frémond [1].

} The purpose of this article 1s to introduce a numerical scheme for solv-

1

E ing two-phase Stefan problems using special friezing index formulation and

E to discuss its efficiency. While there are several mathematical results

: available on the freezing index formulation, such as theorems on the existence,

uniqueness, and regularity of solutions, the attempts to solve it have been

limited to one-dimensional; see Aguirre-Puente and Yreémond (1], We give here

I multidimensional results together with some new numerical schemes.

| , In the following section, the field equations in terms of the freezing
index are derived from the govern;ng equations of the temperature using a
special transformaticu. Then, a nonlinear nondifferentiable algebraic system

of equations are obtained by discretizing the associated variational form of

. the freezing index, without specifically defining the spaces to which admissible




R O - ‘

functions belong and without discussing properties of finite dimensional sub-
spaces used in approximations. The nonlinear system of algebraic equations

is solved by a modified S.0.R. method, since it is nondifferentiable. If the
system is differentiable, the Newton-Raphson mcthod or the incremental method
may be applicable, but in our case the methods are not applicable. Moreover,
the nature of the nonlinearity of the system implies that some restrictions

on mesh size, time Increments, and physical ccnstants  such as.the conductiv-
ities of the ice and water are needed, whereas the S.0.R. method may converge
without any such restrictions for linear systems. We also discuss some smooth-
ing techniques to obtain a smooth interface of ice and water and give some
numerical examples. Our numerical experiments indicate that the freezing

index formulation can lead to a powerful, efficient, and simple method for

solving two-phase Stefan problems.,

2. Two-phiase Stefan Problems

2.1 A Mathematical Description. We give a bricf description of a formulation

of a class of two-phase Stefan problems. More detailed discussions about for-
mulncioﬁs of general two- (or one-) phase Stefan problems can be found in the
monograph written by Rubinstein [6].

The case in which only the solid or the melted phase is governed by
the heat equation and the temperature of thc orher phase remains constant, is
called the one-phase Stefan problem. The two-phase Stefan problem is charac-
terized by heat equations in both phases,

Let D bc an open connected subsct of K", 1,2,3, and let D be
divided into two parts: the solid part Dl snd the melted part D2. If the
temperature ficld of the domain at time t is ropreseated by 8(x,t), then

and D,

D 5

1 are defined by




y Vel

3

{x ¢« D: 8(x,t) <0}

"

D, ()

2.1
D, (t) = {x ¢ D: 8(x,t) >0)

The surface (or maybe subregion of D) I, defined by

0
(2.9 Iyt = {x € D: B(x,t) = 0)
is called the interface (or frozen front) of the solid phase D1 and the melted
phase D2. Let the boundary T of D be separated into three parts Pl, ré, and
Ib. The temperature field 8(x,t) is prescribed on the boundary Pl. There

is no heat flux from the boundary T,. The heat flux on the boundary I} is

2

3 Then, the problem can

assumed to be proportional to the temperaturc on I

be represented by

€8 = V- (%) in D

1 1

(2.3) S : .
. C29 = V-(k2YB) in D,‘3

8 (x,t) = gx,t) on IH

(2.%) aie (x,t) = 0 on 1‘2 X Di
aiG(x,t) = -piQ(x,t) + qi(x,L) on TS n Di
8(x,t) =0 on FO

(2.5)
[k™8]VS + £=0 on 0

(2.6) 6 (x,0) = Go(x) on D

Here Ci and ki’ i = 1,2, are the mass heat capacity and the heat conductivity

of i-th phase, respectively, g, Py and q are given proper functions, 90

. ) n
is the initial temperature of the domain, 6 . ®/0t, Bie = La:l na(aelaﬁg,

i=1,2 n-= (“1,...,nn) is the outward normal unit wvector on I, and




2.7 (kR = k() " - k) (W)

where (W)+ is the limit of ¥ on [}, coming from D, and (W)- is the limit of

0

¥y on I, coming from D

0 1’

0
of the solid phase.

We remark that the portion of Ib is unknown a priori, and that the

gradient WO of the temperature field is discontinuous on rb.

2.2 The Freezing Index

Because of the discontinuity of the gradient of the temperature on the interface

Ib,

the temperature field if the position of the interface Ib is unknown.

avoid this difficulty, Duvaut [2] introduces a special transformation, which

is later called the freezing index by Frémond [31:

t

.8 u(x,t) - [ k.0(x,7) d1
o ¢t
where
(2.9 . i 1 if x € DI(T), i -2 4if x ¢ D2(T)
Since k

tinuous. More generally, if B8(x,-) 1is measurable, u(x,') is differentiable

in generalized sense. Then

1
ki

(2.10) B(x,t) = 7T u(x,t)

This implies that

The function t = S(x) indicates the position of

I'., which is somctimes written by x = L(t). The value is the latent heat

the problem cannot be formulated variationally in the whole domain D for

i i = 1,2 are constants, u(x, ) is Jdifferentiable if 6(x,:) is con-




5

D, (t) = (x € D: a(x,t) <0)

(2.11)
D(t) - (x € D: a(x,t) >0)

since k, > 0. Under the assumption that X and k? are constants, (2.3)

i 1
implies
(-(:lO(x,O) 16 (x,8) i % Dl(O) f !‘l(t)
-C0(x,0) + C,o(x,0) 4 & if x € D, (0} 1 D ()
Tu(x,t) = <
-CH (x,0) + C,(x,t) 1f x © D,(0) N D (r)
"GP 50 4 ¢ (x,8) - if x < D,(0) N D, (1)
Applying (2.6) and (2.10),
“
(2.19) rl G(x,t) - VVu(x,t) = CJ.GO(X) ' Gijp
where
1 ~-1 i x « D, (), i -2 1f x ¢ b _(t)
1 <
(2.13)
J=1 48 xCD (0, § .2 §if x - D, (0)
G €2 b Cors e e 0
From (2.8),
t t
Mdu(x,t) o ] kWD nx dr - [ d8(x, 1) ds
0 o *
Then, putting
t
A
(2.15) g(x,t) = é kig(x,t) dr, 4 -1 if g(x,1) <0, 4= 2if g(x,T) >0
t
(2.16) dix,t) = 6 qi(X,T\d7, 11 4f x+ DD, 1= 24f x+ D, (1),

boundary conditions (2.4) can be transformed to
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(2.17) u(x,t) = E(x,t)  on I

(2.18) du(x,t) == 0 on I',

and
P, .

(2.19) du(x,t) = - Toul, ) s g, 0 on Ty
i

where

i=1 if x ¢ Dl(t), i« 2 if x € D2(t)
Here we have already counted the initial condition of u, {i.e.,
(2.20) u(x,0) = 0 in D

The interface conditions (2.5) have been also taken into account in the
above considerations. Therefore, the two-phase Stefan problem (2.3)-(2.6)

is transformed to the field equation (2.12, the boundary conditions (2.17),
(2.18), and (2.19), and the initial condition (2.20) in terms of the freezing

index.

3. Discrete Two-phase Stefan Problems

We will now consider discrete problems associated with the problem
(2.1, (2.17, (2.18), (2.19, (2.20) ) using finite differcnce and element
methods. For details of mathematical analysis of the same class of two-phase

Stefan problems, see Lions [3]), and Aguirre-Puente and Frémond [1].
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3.1 A Variational Formulation

Under the presumption that a(x,t) belong to L2(D) at every

t € [0,T], t €R,

(di\'.w + Yu-) dx

/
D
= [ (@Buvds + [ (duyvds + [ (diﬁ-V'Vu)vdx
Fe 1‘3 D .

for every v such that v = § on I, here d, = Ci/ki' By (2.12), (2.18),

and (2.19),

f(dil.'xv + Qu tv) dx - [ (= u Hvds j(cjeov + eijiv) dx

D F3

where e = pi/ik' That is, putting

(u,v) = [ uvdx
D

3.1 a,(u,v) = [ Vu'Wwdx + [ e,uvds
i i
D T
3
L.(v) = fCB8.vdx + [ §Guds
S é %o {4
3

we have, for every t € (0,T],

(3.2 uekK (t) : (diﬁ,v) + ai(u,v) = (eijl',v) + Lj(v)

for every v € Ko(t) with the initial condition ﬁ
(3.3 u(x,0) =0

where ’
(3.4) K(t) = (v(v) € Hl(D): v(t) = g(t) a.e. on I )

1

3.5 Ko (t) = fv(vy € le): v(t) - 0 a.e. on Px]




3.2 Finite Difference Methods

2
Suppose that the domain D <R is a rcctangle which is covered by

the uniform net ZD' Let Y. be the set of all nodal points interior of the

domain. Let 21’ 22, and 23 be sets of all nodal points on 1&, Fé, and
Is, respectively. For simplicity, EZ and ZB are assumed to be null, Let

the particular nodal point of the net be represented by the pair (a,p, which
indicates the position of the nodal point, i.e., the coordinates of the

point are given by (aax, BAy), where Ax and Ay are intervals of nodal
points in x and y directions, respectively. 1In this article, for simpli-
city, O&x = Ay = A, Then, the variational problem (3.2) is reduced to the

nonlinear system:

' a, 8. 4 1
(3.6) d;’"u + — u = +
1 Ya,p T T2 Yap A2“‘@-1,;4 Yai1,e Y, -1 Y, p e
Q,R Qa,p
+ Cc.’' (8 =
§ ( O)G,ﬁ + cij £
for (a,p) €1, and
3.7 u = g
a,8 ” &u,p
for (@,B) € Ll. Here the summation convention is not applied.
Nonlinearities can be included in dT’B and e?}s , but these make {t

necessary to resolve the form (3.6).




9
Now, the approximation of d?’ﬁ nu N in time derivative is given by
b4
a,B. _ Q,p l-__ n - n-1
(3.8 d1 ua’B(nAt) = di (nAHt) At (ua,B ua’a)
where 01At), and Ot is the given time Iinterval, Then (3.6)

CtB
can be solved by a kind of S.0.R. methed:

n n-1
[ (1) put W a® = U

s B
D) Ry o = 7 (o1, * ug,p gD Fuy g ) @
* g, p @D ¢ 8EPPEY, o
J
22 N:;,B(m) - j Bln,me - d ’B(n o5 (ua a1 - u;:é)
2
W p @ = (Le@uy (D) Ry ) G N @)
(i11) Repeat until
k. llluf;,a(m) - u;,B(m-n |/ xlu;,ﬁ(m) | < ¢
where ug,ﬁ(m) means the value of u;,e at m-th iteration of the S.0.R.

method, « 18 the iteration factor which is expected to be in the interval

(0,2), € 1is the admissible error of the convergence of iterations, and indices 1

and j of 1 J(n ,m) and d?’s(n,m) are

.1 ”
{ =1 {f ua’B(m)\O J .1 1f (@ <0

0q,p
(3.10) |
L-2 4f & m >0 [y 2 1f (9) >0
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where

.n l ' n _ .o-
ua,B(m) " (ua,ﬁ(m-l) Uy

The nonlinear term (n,m) £ in (3.9) is varies like a step function,

5?{ﬁ
1)
while other remaining terms in (3.9) are expected to change moderately.

This implies that the relationship

2

2
\ /
(3.11) lR;,am) - ‘—,} dcz’ﬁ(n,m)ﬁ:;’a(m) | >> | 3- e‘i"?(n,m)zl

must be satisfied in order to get convergence of the iterative scheme (3.9).

EXAMPLE 1. ULlet us consider the one-dimensional problem, whose domain D 1is

the interval (0,1), material constants d1 and d2 (i.e., kl,k2,C1, and C2)

are given constants, Let the initial temperature 90 be given by
eo(x) = (x - 1/2) 1f x<1/2, -0 if x >1/2

The boundary conditions g(0,t) and g(l,t) are given by

g(0,t) = - 1/2 g(l,t) -t
Then, for t <1,

A A 2

g(0,ty = -k t/2, g(l,t) - k,t°/2

1 2

If n=1, and @)= 0.5, (3.11) brcomes

1 1 2 .1 2
lO.S(ua_l(m) + g (me1) - 0,250 di(l,,m)ua(m)l >> 00,2588

: .1
Under the assumption that u, 1is almost the same with ﬁg = GOH (i.e.,

the time interval At s taken to be sufflciently small), this becomes




e yope . .

11

0.5k,A + At >>0.25a°¢ i.c.,

3.19) 2k At >> Az #

That is, in order to satisfy the condition (}.11), the relationships (3.12)
has to be assumed. Under this condition, the iterative scheme (3.9)
may converge.
For the case that C1 = 0.5, C2 = kl - k2 = 1,0, £~ 106, and A = 0,02,
the convergence for the various time increments At is obtained in Table 1.
In Figure 1, the position of the interface is described for several

time increments At. This shows that the time increment At has to be small

enough in order to treat the position of the interface. That is, it is pre-

ferable to use a At which is the almost-limit value for convergence of the

iterative scheme (3.9).

EXAMPLE 2. Let us again consider a one-dimenrional, two-phase Stefan problem
whose material constants Cl’ 02, kl’ k2, and £ arc obtained for a silty soil

with twenty.percent moisture content, i.e.

k, = 60 kcal/m-day.c k? = 50 kcal/m-day.oc

C, = 450  keal/m> c C, = 600 kal/m™ °c

P
[

= 26000 kecal/m3

L2

Initially, the soil foundation 1is unfrozen so that the initial temperature

e is given by

0

[e]
6, == ax , a = g(L,0/L"




where x 1is the depth of the foundation, and g(L,0) is the initial tempera-
ture at the end depth L. We specify boundary conditions g(0,t) and g(L,t)
described in Table 2, Let the depth of foundation be given by L = 5m. We
uge a 3-point finite difference scheme for space discretization with the mesh
length A. For the time increment, At = 10 days is used.

By arguments similar to those in Example 1, the criteria (3.11) be-
comes

2 .
(3.13) %Ikl 280,80 | 2> 7 8%
Since the frozen front propagates from the surface of the foundation x = 0,
the condition (3.11) has to be evaluated at - 1 and n = 1., Since (90)1
is almost zero at x = Q), the relation (3.13) {s obtained under the assumption
that ui is small enough so that Agdiﬁi is negligible, Here g(0,t) {is
the boundary temperaturc given on the surface of the tfoundation x - 0,

We calculate threce cases, 1.e., A: 0.1, A - 0.2, and A = 0.5. As
shown in Table 3, convergence of the scheme (3.9) is not obtained for the case
of A = 0.5, For A= 0.2, the scheme (3.9) is almost convergent. That {s,
around ghe interface, values of the freezing index vary periodically, and
the criterion (3.9)iii is not satisfied, choosing ¢ = 10-3. However, the
case of A= 0.1 gives nice stable convergence of (3.9) except for the first
few time steps. For the first few steps, the relative tolerance may not
reach the given criterion e = 10-3, since the value of the freezing index
is considerably smaller than the latent heat £. Recall that by a phase change,
the latent heat £ enters the force term in (3.9). However, after several
steps, the global result becomes stable and the large relative tolerance for
the first few steps does not affect the subrcquent results, If we do not

expect large relative tolerances, they can be aveided by shifting the value
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of the initial freezing index. That 1s, in place that the freezing index is
assumed to be zero at the initial stage, we just shift u(x,0) to some posi-

tive value u, whose order of magnitude may be the same as the latent heat 2.

0

We also remark that the condition (3.13) indicates that the mesh size
has to be so small that the frozen front can cxceed at least one mesh if the
system is far from equilibrium. @

We shall discuss some modifications of the approximation (3.6) in

order to get an efficient method of solving (3.6).

First, the temrm d?’ﬁﬁa 6(nAt) is approximated by
)

(3.14) d?’ By

ua)ﬁ(nzlt) = d‘:’ﬁ((n-l)m) 1wt n-1y

At Ua’ B ) Ua’ B

Q
instead of (3.8). Then, the coeffictent d?" can be fixed at each time step.
That is, material ceonstants at n-th step are determined by values at (u-1)-th

step which have been already obtained. This implies the modification of

3.9)-(11):

2 -1
r;*‘)' Rg,s<m> = (%ﬁ-df’ﬁ(<n-1)Ac)+4) (ug_l a(™ b (-1

n n - 20,8
TSI L T

ct, 1341 0ct, 8
(3.9 { + £E da’ﬁ( n-l)/Xt)un.1
At i ( ’ Q,p

N p® e mm g

2
ua,a(m) = (l-w)u;’B(m-l) + u(Rg’B(m) + %LNZ’B(mg
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EXAMPLE 3. Here the problem described in Fxample 1 is solved by the iterative

procedure (3.9)' instead of (3.9). Let C 0.5, C.. k, =k, =£: 1,0, and

1 2 1 2
let the boundary conditions be given by

g(0,t) = (t-1)/2, g(l,t) -t

The initial temperature 90 is same as Example 1. Results, shown in

are obtained by the mesh size A - 0,02, the time increment At = 0.05,

-3

the {teration factor w = 1.0 in (3,9), and the tolerance ¢ = 10
According to numerical calculations, see Figure 3, (3.9) and the modified

scheme (3.9)' give almost the same propagation of the solid phase. However,

after reaching the limit of propagation of the solid phase, the

modi fied scheme (3.9)' gives considerably different results from (3.9). This

difference comes from O(di) = 0(8), i.e., the order of the latent heat £

is almost the same as the one of d = Cl/kl and dp = C?/ke' If 2 is much

1

bigger than d then differences of results by (3.9) amd (3.9)' may

i))

not be so large.

We also solved the same problem by the method given by Nogi {7]). Details

of this comparison are found in Kikuchi [4]. @

Second, the term e‘f}ﬁ £ of (3.6), which is related with the latent

heat of the solid phase, is homogenized by

(3.15) He‘;'jat = (n( aLf LA BA-L L Rl ea’Bll/(lohl+h2)

€13 * €y 13 iy 2513

for proper number h, and h2. Then, in (3.9)-(ii), the term e?f(n,m)ﬂ

is replaced by e
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EXAMPLE 4. A two-dimensional model is considcred ir this example. Let

D= (0,0.,4) x (0,0.4), C. =0.5, C_ = k1 =k? - £ : 1,0, The initial temperature

1 e
90 is given by 90 = 0 1in D. Boundary conditions are given by
g0,y) = (0.8-y)(2t-1)

g(x,0.4) = (0.8-x)(2t-1)
g(0.4,y) = 0.5y (1-3v)

g(x,0) 0.5 Vx (1-3t)

The uniform mesh is cmployed for the net of finite difference with
A= 0x = &y = 0,02, The time increment At 1is 0.05. These satisfy the

criteria (3.12) and (3.13), i.e.,

!
il

2k, ot = 0.1 > AL

1 0.02

2k, At = 0.1 >> Ael = 0.0004

1

It
1

At the 9-th and 9-th time step, i.e., at t = 0,4 and t = 0.45, phase transi-

tion from the melted region to the solid region becomes very sensitive in

this example. At the 7-th time step, the range {(x,y): 0 < x < 0,4, 0 < y < 0.4,
and y >'x] is melted with almost zero degrec temperature. Then, during the
7-th step to B-th step, the boundarfes (x,0) and (0.4,y) become solid. Then,

the solid phase develops gradually from the boundaries and there remains the
melted region inside the model. We examine how the isolated melted region h

remains at t = 0.4 and t = 0,45 using the modification (3.15) for various factors h1

and h2. Four cases are shown in Figure 4-(a) (at t - 0.4) and Figure 4-(b) (at t=0.45”
Except for line of zero temperature, equi-contour lines coincide for
any choice of h1 and h_, at t - 0.4 and 0.45, That is, the homogenization

(3.15) does not affect the temperature field except around the frozem front.
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~— However, the position of the phase transition depends strongly upon the
choice of h1 and h2. Numerical results show that equi-distributed homo-
genfzation (h1 = h2 = 1) gives a fairly smooth interface of the solid and

melted phases.

Third, the conditions (3.10) may be replaced by

o]

i=1 i€ ua,B(m) < -clkl
N (3.10)" ) .
’ i=2 |if uQ”Q(m) > ek,
for the term c?}ﬁ(n,m) in (3.9), where ¢, and ¢, are given small positive
numbers, The domain
(3.16) Tp = (x €D: -ek < u(x,t) < ko)

~ might be called the transient region of the solid and melted phases.

EXAMPLE 5. The same example described in Example 4 is solved by applying
(3.10) ' instead of (3.10) in (3.9). Here h1 = 0 and h2 = 1 are taken, i.e,,
no homogenizations are made., As Example 4, numerical results at t = 0.4

are shown in Figure 5. 1In the case of € 7 Gy 10-2, shown in 5-(c¢),

the whole domain becomes solid. However, the transient region, indicated

by small circles, spreads widely. In this range, it cannot be precisely de-

termined whether the point is melted or frozen. We may say that intermediate

state occurs in that range. The reason the whole domain becomes solid is
that the body force due to the latent heat is entirely neglected in the tran-

1 - 2

transient region certainly becomes narrower than the case of €, = ¢ = 10

‘ slernt region. In the case of ¢, = ¢, = 1077 as shown in Figure 5-(B), the
NV
1

2
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The temperature fields away from zero degree almost coincide in both cases,
This means that the effects of the modification (3.10)' are limited to regions

around the phase change.

3.3 Finite Element Methods

For cases where the boundary conditions are not only the Dirichlet
type but also the Neumann and the third types, or their domains are con-
siderably irregular, finite element discretization is preferable. Let the

domain D be triangulated. Let 2. be the set of all nodal points in D

and on Ié. Let El and Zj be sets of all nodal points on Fl and ﬁy
respectively. Let @  be the global interpolation function at a-th nodal

a

point which is constructed by local interpolation functions (shape functions)
attached to finite elements. Then, every function v{t) 1in Hl(Q) can be

approximated by
o
(3.17) vix,t) = v (D) G(I(X)
Here the summation convention is applied. 1In this section, this convention
1s used throughout--all repeated indices are summed throughout their range.

Putting . dva/dc, (3.2) is discretized by

a, . Caad B oad B i3 BR3P By . 0
(3.18) ()} ¢ Kh(t). llﬁkﬂf’ Y u Sapv . FB Vo4 Lav for every {v") ¢ Kh(t)
(3.19) K (0 = (V@) ¢ K v - 3% act)
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(3.20) G = (70) e’ o0 ack)

Recall that the index i depends upon the current value of Ga, and the index J

depends upon the initial value of Ga, i.e., Qg. More precisely,

t=1 1f Jw<o (3.1 4f e¥<o

(3.21)
>0

DR O2

1=2 4f () >0 |j-2 1if o
ices Mi and Si are defined by
Matrice s n s ine y
i
= . )
(3.2 M (diaa.%) . Sus - 34 (osa.oi.,,

i
Vectors FBJ and Lé are defined by

. ij - ) ) J . L)
{(3.23) FB = (eijb’aﬁ" L:3 ; Lj(&ﬁ)

Rere (. -y, a,(+,), and Lj(') have been defined in (3.1). Then, from (3.18),

it is necessary to solve the following nonlincar system
a . L oad o i 1] j
3.24) . {u'} e K (0 uﬁﬁaﬁ +u Saﬂ = FF + Lﬁ

This nonlinear system can be treated by the iterative algorithm described in

(3.9). Similar with the case of finite difference methods, modifications on

i
Méﬁ’ Saﬁ, and Féj can be considered.
First, matrices Méﬁ and Séﬁ may be replaced'by
i (mAL) = (d, ((n-1D)AYG , ¢
ap = gy tin o’ R
(3.25)

i
Saa(nﬂt) = ni(da,ﬂﬁ)((n-l)ﬁc)

Then matrices M1

ap

nonlinearity of matrices are disappeared at ecach time step.

i
and Saﬁ do not depend upon the current value of ﬁa(nAt), i.e., “
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However, the homogenization discussed in (3.15) 1is difficult for

the finite element discretization. So we consider only the method of

modification (3.10) ' instead of (3.10), i.e., (3.21) can be replaced by

It
y—

-Q
10 () < -ejky

1
(3.2 {
o4
' 1=2 4f W (0 > ek,

for the vector {F;J).

The numerical scheme which is employed here has the following final

form:
Q-1 N
2,n aGEn oAl Byn 5 21 B,n _ 413) /ai
(3.26) v’ (1 (.,)uk-_1 u»(ﬁél Saﬁuk 13-&+1 uly FB /S

(@ no summation)

Here ui’n is the value of ua {for the k-th iteration of the S.0.R. method

at time nAt, « 1s the iteration factor, and

r Aq i i
sa5 MQ,B/At + esaf3

(3.27y ﬁ Pl Féj | Lé + M‘;iuﬁ’n-l/ﬁ\t- (1-&))52;,,}1&“'1

=
IA
©
AN
—

EXAMPLE 6. Fgure 6-(a) shows the domain D and its boundary conditions. We
employ rectangular linear isoparametric elements with 16x16 = 256 meshes
wvhoge size 1s 0.025, Material constants are

k, = 1.0, C, = 1.0 for solid part Dl(tL

=
1"

1.0, ¢, = 0.5 for melted part D_(t),
<

fue
n

1.0,
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The initial temperature 00 is given by 410C everywhere, Dirichlet boundaries

are considered at two points on the top surface given by

1.0 1f0<t<0.6 and 0.5<t<0.6
8(x,t) = g(t) =
0.5 if 0.4~ t~0.5

On other parts of the boundary, the Neumann condition 8 = 0 is assumed,
The time interval At is 0.1. We use 6 = 1.0 in (3.27), i.e., the implicit
O-scheme of time discretization and w = 1.4 as the overrelaxation factor of
S.0.R. method. The judgement of convergence is done 1f the relative tolerance

Za u::“ - ug:?l/ Zalu:’n' is less than 10~4.

In Figure 6(b) we show the case of € T €y T 0 (see (3.2D'). Until
time step 3, the frozen front propagates monotonically with fairly smooth
in;erface, since the cooling at the top surface is monotone., The step 4
has somehow unstable values in temperature ¢, which has a fairly irregular
shape of the frozen front. We think this {s becausec the frozen area is going
to vanish almost at this stage. In order to aveid this irregularity, we tried
several cases changing € and €50 which are shown in Figure 6(c). If we
compare the figures at time step 4, we notice that the shape of the remaining
frozen part is strongly affected by the valucs ot < and €y-

fortunately, this frozen area does not affect appreciably the temperature field

However,

of the subsequent time step, since the values of the freezing index u hardly
change by the modification (3.10)'(the field variable is u, not temperature 8).
The selection of € and €, depends on our numerical and experimental experience,

but it seems to us that € = €y " 0.001 i{s tairly proper upon observing

Figure 6(c).

'
'
i
i
1
1
Il
'
!
'
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table 1. Convergence Test for EXAMPLE 1.
At 2k, 8 Al convergence
10 20 2 0.k.

5 10 z ﬁ 0.k.
~ 1 2 ¢ o.k.
0.5 1 2 o.k.
0.1 0.2 2 NO
k] = 1.0
A =0.02
£ =100.
asiiiie da0
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Table 3. Convergence Test for EXAMPLE 2
1
A kyatg(0,4 t)/2 / gg convergence
0.1 1500. 240, 0.k.
0.2 1500. 960. No Good i
0.5 1500. 6000. No
k] = 60.
£ = 24000.
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APPENDIX C

Qualitative Analysis and Galerkin Approximations

of a Class of Pseudomonotone Diffusion Problems




1.1

1. INTRODUCTION

In this paper, we present a qualitative analysis of solutions and Galerkin
approximations of a class of nonlinear diffusion problems characterized by nonlinear
parabolic equations of the type

R O
where u is an element of a separable reflexive Banach space W densely and
continuously embedded in another Banach space V and A is a coercive W-pseudomonotone
operator from its domain W in V onto the dual space V' , Since A 1is not
monotone, the analysis of problems of this type is complicated by the possibility
of non-unique solutions, an absence of continuous dependence on the data, and the
corresponding absence of stability.

Most of our attention will be focused on the following class of problems:

Find u = u(x,t) , (x,t) € @ x (0,T) , such that

DrAw=f , x€Q, 0<c<T
t
u=0 , x€3, 0<t<T 1.1)
u(x,0) =u_, x€R
o
where
A(u) = Al(u) + Az(u)

-V +a(x,Vu) + b(x,u,%u) , x € © | (1.2)

g(x,Vu) = a(x)Vu + k(x)]Vulp-ZVu
a,kEL@Q@ ,2<p<w (1.3)

a(x) > a, >0 , k(x) > ko >0 a.e. on

and b(g,5) = b(x,5,z) 1is a totally Fréchet differentiable function in R X R®

for which there are positive reals q and r such that
Ib(z.o)] < c]z|dz]"

‘r

{A

b )] < e lel%Hel® @ # 0 (1.4)

~

l3be,)| < e 129" (x4 0)

{A




and

q=0 or q> l1, r=0 or r >1

(1.5)

l<g+r<p-1
Here  1is an open bounded domain in " with boundary 9@ , 0 < T <o, f
is given data in Q x (0,T) , and u, is initial data given on Q .
The operator Al is a generalization of a part of a nonlinear heat diffusion
operator proposed by Coleman and Mizel [4]. With a = 0 , it also corresponds,
when spaces of vector functions with zero divergence are considered, to the diffusion
part of the generalized Navier-Stokes equation studied by Lions in [10] and [11].

The general operator A, may model a convective part of the process. For example,

2
convective terms such as those in the Navier-Stokes equations, or in heat conduction prob-
lems when convective terms due to chemical reactions are present. This type of diffusion
equation is important beyond the study of thermomechanical phenomena; it also occurs
in modeling biological, social and other phenomena (Cf. Fitzgibbon and Walker [6]
for a survey of nonlinear diffusion models.) We should mention Tsutsumi's study,
(16], where a non-monotone parabolic problem in which an equation of the form
du/d3t - X:=1 8([8u/3xi[p-23u/axi)/8xi - ud = 0 is analyzed, which is a special
case of the problem considered here.
This study is divided into two principal parts. Part I, Pseudomonotone
Parabolic Problems, is devoted to the study of the existence of solutions of a general
class of non-monotone, nonlinear parabolic equations. After some preliminaries
on properties of certain function spaces are laid down in the section following
this Introduction, a general class of nonlinear parabolic problems involving
coercive pseudomonotone operators is given in Section 3 together with an existence
theorem for such problems. An existence theorem for problems of this type has
been given by Lions [11], but.to lay groundwork for our study of Galerkin approximatioms
taken up in Section 9 of the paper, we give an alternate proof. The principal tool,

both in the analysis of the general problem and in the approximation of the model

problem (1.1) - (1.5), is the construction of an elliptic regularization of the
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given problem. This regularization, of the type used by Lions [10], is introduced

and analyzed in Section 4 and the proof of the existence theorem for the pseudomonotone
parabolic problem is completed in Section 5. In Section 6 of the paper, we give

a brief summary of some results of Oden {[13] which provide sufficient conditions

for pseudomonotonicity of nonlinear operators on reflexive Banach spaces.

Part II of this study is concerned with the specific class of nonlinear diffusion
problems characterized by (1.1) - (1.5). In Section 7, we show that the operator A
defined in (1.2) is coercive and pseudomonotone on a dense continuously embedded
subspace of the Banach space Lp(O,T; Wi’p(ﬂ)) and that solutions to (1.1) do
exist in Lm(O,T; LZ(Q)){] LP(O,T; Wi’p(ﬂ)) under the conditions (1.3) - (1.5).

In general, multiple solutions will exist to (1.1) and there cannot exist a continuous
dependence on the data. However, regularity conditions on the solutions can be
given which will guarantee their uniqueness, and these are discussed in Section 8.

Sections 9 and 10 are devoted to studies of Galerkin approximations of the
model problem (1.1) - (1.5). In Section 9, we describe properties of space - time
Galerkin approximations of solutions in LP(O,T; Wi’p(ﬂ)) and we give an approximation
theorem which establishes their strong convergence (in Lp(O,T; Wi’p(Q))). We
also derive error estimates for such approximations. Finally, in Section 10, we
describe Faedo-Galerkin (semi-discrete) approximations. We note that, in general,
this type of semi-discrete approximation is not necessarily well-defined for
coercive pseudomonotone parabolic problems. However, in the case of our model
problem, it is proved in Theorem 10.1 that sufficient conditions are satisfied
which guarantee existence and also uniqueness of Faedo-Galerkin approximations
to problem (1.1) - (1.5). We also prove sufficient conditions for weak and strong
convergence of such approximations and we establish corresponding approximation

error estimates.




PART I. PSEUDOMONOTONE PARABOLIC PROBLEMS

2. Some Preliminaries

The following notations and conventions will be in force throughout this

study:

o, I+
CARRIR(®)
<>

a real, separable, reflexive Banach space.

the dual space of V.

duality pairing on V' X V ; i.e., for v'€ V' and
vEV, <v',v_>= vi(v) .

(H,(°,°),|‘|) = a real Hilbert space identified with its dual, in which V
is densely and continuously embedded: V H = H'. Then H is a pivot space such

that

VG HG LA (2.1)
Next, denoting by t € [0,T] , 0 < T < ©» , the time variable, we introduce

the space of vector functions of time

D)

L (0,T;V)

W, |

v: [0,T] > V 5 [[|v]]l
T 1/p

= U lv(ey )P dt} <o) 2<p<w (2.2)
0

which is a separable, reflexive Banach space, whose dual space can be identified

WhLll- MY =P 0,139 , ' = p/(p-1) .

[*,-1]

duality pairing on V' x V , i.e., for v'€ V' and

vev,

T

f < (), v(e)> dt (2.3)
0

[v',v]

(H,(°,°)H,|~[H) = L2(0,T;H) equipped with the natural inner product and norm,
\ which being identical with its dual, is a pivot Hilbert space such that
VG HG V! (2.4)

D((0,T)) = space of test functions defined on (0,T) ; i.e.,
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¢ € D((0,T))e>d € c:((o,r)) with the usual locally convex linear topological

structure.

D' ((0,T);X) = L(D((0,T)),X) = the space of distributions on 0((0,T)) with

values in some normed linear space X .

We observe that since V CD'((0,T);V) , every v € V defines a distribution

on D((0,T)), also denoted by V , with values in v , given by

T

v(9) = J v(t)e(t)dt , ¥ ¢ €D(0,T))
0

whose distributional time derivatives, also belonging to D' ((0,T);V) , are defined

by m

@, |l

T m
23 (4) = (-1)mJ vy S8 4, ¥ 9 € D((0,1))
at 0 dt
Finally, we introduce the separable, reflexive Banach spaces (U, ”' lu) and
*llly) defined by
U={v: vEV, v =23v/dt €H}
. (2.5
livllly = vl + 131,
W= {v: vEV, v=23v/3gt€V}
. (2.6)
Wl = tvlll + vl

which satisfy the relation (with dense inclusions and continuous injections)

UG WGV 2.7)

and whose elements possess the following properties (cf. [8] and [10]):

‘

i) W is continuously embedded in C([0,T];H) ; i.e., if vE€ W , then,

ii)

after an eventual modification on a set of measure zero in (0,T] , v

is continuous from [0,T] into H and there is a constant K ,

independent of v , such that

If

s v ] <xlivily (2.8)
t €[0,T]

u,v €W , then u,v satisfy the Green's formula

[u,v] = (u(T),v(T)) - (u(0),v(0)) - [v,ul (2.9)
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iii) The trace mappings v+ v(0) and v & v(T) from (W +~ H are surjective
and thelr restrictions to U have range dense in H ; i.e.,

1 {v(0): ve W} =8 = {v(T): vE W} (2.10)

{v(0): v € U} and {v(T): v € U} are dense in H (2.11)
We also remark that we make frequent use of Young's inequality in subsequent
analyses: If x,y€ER, 1<s<w, g'=3s/(s-1) , and b is any real > 0,

then

xy<-l£|x|s+
) S,bs'

(2.12)

3. Existence Theorem

N With the conventions of the previous section in force, we now consider a
general class of non-monotone evolution problems characterized as follows:

Given f € V' and u, € H, find u €W such that

. ou
— 4+ A(u) = £
P ot (3.1)
u(0) = u

o
Here A 1is an operator from V into V' , possibly depending upon the time
parameter t € (0,T) , satisfying the following conditions:
AI. A: V> ' is W-pseudomonotone*, i.e.,
. i) A 1is bounded in the sense that it maps bounded sets in V into
bounded sets in V' .

ii) If {un}C:(U is a sequence converging weakly to u € W and if

1lim sup [A(un) R un—u]_i 0

n->cc

then, ¥ v EV ,
, lm inf [ACu ) , u -v] > [A(u) , u-V]
AII. A: V> V' 1is coercive, i.e.,

. A et >+ @ as ||yl >

*
We will refer to A: V » V' as pseudomonotone if it is V-pseudomonotone.
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Theorem 3.1. Let the operator A: V + V' satisfy conditions (AI) and (AII).
Then there exists at least one solution u € W to problem (3.1). E]

A proof of this theorem was given by Lions [11, Chap. 3] which makes use of
the method of elliptic regularization. Lions' method, which was introduced in his
study of linear parabolic problems [9], effectively involves converting (3.1) into
an elliptic problem, depending on a real parameter € > 0 , and constructing
solutions to (3.1) as limiting cases when € - 0+ . When A 1is a spatial
differential operator, the method described in Lions [11] leads to an integro-
differential equation involving € .

However, one of the principal objectives of the present work is to study

properties of Galerkin approximations of (3.1) and, in particular, to obtain a

priori estimates for such approximations. The general method employed by Lions
does not lead to results from which a constructive approximation theory can be
easily established. For this reason, we give here an alternative proof of
Theorem 3.1. which was suggested by Lions [11], also based on the notion of
elliptic regularization, but in which a different form of the regularized problem
is used. We will show in Section 9 that the constructive nature of our proof

is useful in studies of Galerkin approximations. Our method generalizes those
used by Lions in his study of nonlinear parabolic problems [10] and by Dubinskii
in the analysis of parabolic problems with semibounded variation [5].

4. An Elliptic Regularization

We begin by recalling that U denotes the separable, reflexive Banach
space defined by (2.5) which is everywhere dense in Y . We will denote by
[-,-]u duality pairing on U' x U .

We next introduce a family of "elliptic" operators AE: U-U', e is a

positive real number, defined by

du ov oV
[AC (u))V]u = s[’s’g:s’g]H - {U)E'E]H + (U(T),V(T))
+ [A(w),v] ; u,vEU (4.1)
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4.2

where A 1is the operator in (3.1) which satisfies conditions (AI) and (AII).
The problem of finding u. € U such that

[A (a),v], = [£,9] + (u,v(0) ¥ veu (4.2)

is an elliptic regularization of (3.1) obtained (formally) by adding to
u/dt + A(u) the term -eazu/atz . We will first show that (4.2) is solvable
and then prove that solutions to (3.1) are obtained as € - 0+ .
Lemma 4.1 The operator Aez U~ U" defined by (4.1) is (i) U-pseudomonotone
and (ii1) coercive.
Proof. (i) We observe that the operator Ae: U~ U" can be expressed by

the sum Ae = B€ + A where B€ is the linear operator on U defined by
C[puav) [ v
[Bou,vy = e[at’at]H [“’Bt]H

+ (u(T),v(T)) ; u,v €U (4.3)
We prove first that Bez U~ U 1is positive (monotone) and continuous. Indeed,
e 2 1 2 1 2
[Beu,u]u = elu}H + 2 fu(O)] + 3 fu(T)} >0

and . . .
[Bu, vl = (V) + (@,v), + (u(0),v(0))

[ A

EIGIH ‘;|H + ]LIH lVlH + lu(0)| iv(O)l

[ A

(e + & + 1) lulli, vl

where k, and k, denote the continuous embedding constants of VG H and
UG c([0,T];H) , respectively.

Next note that because of condition (AI), A 1is U-pseudomonotone as an
operator from ( into U' . Hence the operator Ae is pseudomonotone since
it is the sum of a continuous monotone linear operator and a pseudomonotone

operator (cf. [11, p. 189])).

(i1) .
[AE(V),V]U = Clvlﬁ +-% IV(O)I2 +-% |v(T)|2

+ [A(V),V]

T e e A s

e et

oy g s ™

P p—

e e eyt
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4.3

Hence .2 2 L///“Q
(A W,vly AW, vite|v]y ) V(O P+V(D |

+
vl I+ (5, =2 vl

Since A 1s coercive on V by assumption (AIl), the first term in the last

result ++® as ”lleu > @ and this proves the coercivity of A_ on U. D
Therefore, since Lemma 4.1 establishes sufficient conditions for the
surjectivity of Ae: U-U" (cf. [11}), the following existence theorem holds.

Theorem 4.1. For any fixed € > 0 , there exists at least one solution
ue € U of problem (4.2).0

. 5. Proof of Existence Theorem 3.1

We now return tothe existence theorem (Theorem 3.1) for the nonmonotone

parabolic equation (3.1) in which the operator A: V > V' satisfies conditions

. (AL} and (AII). Up to this point, we have shown that the elliptic regularization
(4.2) has a solution in U for any € > 0 . We now show that solutions to (3.1)
are obtained as ¢ - O+ . This is accomplished by following the standard
procedure: (a) establishment of a priori bounds using the boundedness and
coercivity of A ; (b) passage to the limit as ¢ - 0+ 3 (c) use of pseudomonotonicity
arguments.

. Lemma 5.1. Let ug € U be a solution of (4.2). Then, for every ¢ > 0 ,

there exist positive constants Cl’ CZ’ C3, and C4 , independent of ¢ , such that

du
1) e il <c¢; 5 ie, lulll <c, and €
[ W 1 € 1 -51’.— *_:CI
u
1) /e |=£ . < 2 (5.1)
111) Iue(O)] <Cy and luE(T)l <c,
i : Proof. The first inequality in (i) and inequalities (ii) and (iii) follow

from the boundedness and coercivity of A . Indeed, replacing v 1in (4.2) by

u_ , we have
I €
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elo 2+ fu @2+ fu [+ (a),u]

[f,u_] + (u ,u.(0))

2
<M, Mul + 8 o 12+ -2 Ju_0)?
€ 2 o} 2b2 €

A

where b denotes the Young's constant. Setting b =1 produces the inequality
2

(ACu),u_] [u_|

[ € 1 o)
< Wellly + 5 ——

T 2 Yl

and by setting b = V2 the bounds (ii) and (iii) in (5.1) follow from

= Jllu_lll < c;

emd§+%]%wnz+%|%wnz
< (Macsp e+ WEN) Hu fil + fu[?

To prove the remaining bound in (i), we identify a solution ue of (4.2)
with a distribution 1%:6 D'(0,T):V) in the sense that u, satisfies the
distributional equation

- CuE + u, = f - A(uE) (5.2)

Then, proceeding as in [10], it follows that in H

- EL (0) + u _(0) u
€ & ° } (5.3)

0

u (T
and, by integrating (5.2),

T
&E(t) = [0-% /e ey - A(T,u_(1))1dt

from which

masm,.;u%eﬁ’euLl )mf—M%nm

T,

| A

e - ac) |l

This, since A 1is bounded, completes the proof. (]

Lemma 5.2. Let {UE}C: U be a sequence of solutions to problem (4.2)

+ .
obtained as € + 0 . Then there exists a subsequence, also denoted {uE} s

-+

and functions u€W and X € V' such that, as € > 0 ,




i) ug — u weakly in W ; in fact,
u —> u weakly in V and
du, du . '
TS —_— T weakly in V
i) £ %u—f— —> 0 weakly in H
iii) A(u) —> X weakly in V'
iv) uE(O) —> u(0) weakly in H
ua(T) —> u(T) weakly in H
Proof. The convergence results (i), (iii) and (iv) follow from Lemma 5,1
the fact that the Banach spaces W , V and H are reflexive, and the boundedness
of A . To establish (ii), note that from Lemma 5.1 /& {ﬁel <€y, €2 0.
Hence, ¥ w&H ,
E(;E,w) < /e C, lw| >0 as e - ot
H H g
Therefore, by virtue of Lemma 5.2 and Green's formula (2.9), we see that

in the limit as

Then, using the

that the limit u of uE

It

that

from (4.2), Lemma 5.2 and (5.4)

£¥0

£ > 0+ equation (4.2) becomes
[6,v] + [x,v] = [£,v] + (u-u(0),v(0) ¥ veEU

fact that U is dense in V

and property (2.11), we conclude

satisfies the following equation:

(£,v]

Yy vEgV }
u in H

o]

[%E,V} + [x,v]

u(n)

(5.4)

remains to be shown that X = A(u) in V' . Toward this end, we observe

Lim {efu, g = (uou ]+ (0,0 (D) + [ACw),u_])

[f,u] + (uo,U(O))

Lim {-[u,u ] + (u (D,u(®) + [Adu),ul}
£+0




# from which it follows that

]

lim [A(uc) ,uf_,-u]

. s 12
-1lim {CluEIH

40 e+0

1 2 1 2
+ E-Iue(O)-u(O)l + 3 |“€(T)'U(T)| }
1 <0
Hence, since A: V =+ V' 1is W-pseudomonotone,

lim inf [A(ue),uc-v] ~ [A(w),u-v] ¥ v EV

€Yo
and
Lim inf [ACu)),u ~v] < lim sup [A(u),u ] = [X,V]
. Y0 ev0
3
. < 1lim sup [A(u ),u} - [x,v]
= €
£+v0
= [X,U'V]
Consequently,

[A(u)-x,u-v] <0 ¥ vEV
and we conclude that
X = A(u) in V' (5.5)
The proof of Theorem 3.1 now follows immediately from (5.4) and (5.5).

6. Some Sufficient Conditions for Pseudomonotonicity

We will review briefly here some results cf Oden [13] which provide useful
tests for pseudomonotonicity of a certain class of operators. We first state
a corollary of Aubin's compactness theorem [2].

Theorem 6.1. Let V. be a Banach space in which V 1is continuously

‘ 1
]
embedded and consider the Banach space Y defined by
. P
v={v:ivev,v=entonv),
' 1< Py < (6.1)
: vty = vl + 19l , vEY

1
L (0, T3V))

Ve g If X 1is a Banach space continuously embedded in Vl and in which V 1is
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compactly embedded:

[
VC,XC)V1 (6.2)
then the injection from Y into the space Lp(O,T;X) is compact:
- . o
yG, 1P (0,T;X) (6.3)
0

Following Oden [13], let A(u) denote values of an operator A from the
Banach space V into its dual V' which has the property that there exists a
map (u,v) » A(u,v) , t € (0,T) , from V x V into V' such that A(u,u) = A(u)
and the following conditions hold:

BI. ¥ vV, up A(u,v) is hemicontinuous from V into V' ; i.e.,
¥ uyv,w€ V , the function

d(s) = [A(utsw,v),w] , s ER
is continuous in s .
BII. ¥ u,veBu(O) ={weV: [|lwl] <u, w>o0} ,

1A Cu,w)-AW,0),u=v] > -H(u, || vy ) (6.4)
L7 (0,T;X)

+
where H: R+ xR - R+ (R+ = [0,°)) 1is a function continuous in each of its
arguments with the property that

lim % H(x,0y) =0 ¥ x,y €& (6.5)
640

and Lp(O,T;X) is as in Theorem 6.1.

BIII. If u —u weakly in Y of (6.1), then

lim inf [A(v,u ) - A(v,u),u_ -u] >0 ¥ veEV
T n n -

and (6.6)

lim inf [A(v,un) - A(vyu),w]l =0 ¥ v,w€V

N>

BIV. A: V - V' 1is bounded.
The importance of these conditions is made clear in the following theorem
proved in [13].
Theorem 6.2. Let A: V > V' satisfy conditions (BI), (BII), (BIII), and (BIV).

Then A: V > V' is Y-pseudomonotone. O
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7.1

PART I1. A MODEL PSEUDOMONOTONE DIFFUSION PROBLEM

7. Existence Analysis

In this part, we are concerned with the qualitative analysis, Galerkin and

- Faedo-Galerkin approximations of the following generalized nonlinear diffusion
problem: Let 2 be an arbitrary bounded domain in R" with boundary 99 ,
and 0 < T <o ., Given data f in £ x (0,T) and initial data u  on Q,
find u = u(x,t) , (x,t) € @ x (0,T) , such that

du

T VeaVu) +b@,Vu) = £, in Q= Q x (0,T)
u=0, on Z=20380x (0,T) (7.1
u(+,0) = u,, on Q
where 2
a(Vu) = aVu + kIVu|p Vu
a,k EL(Q) , 2<p<w (7.2)

a(x)zao_>_0 and k(x)3k0>0 a.e. x€Q
and b(u,7u) = b(x,u(x,t), Vu(x,t)) is subject at a.e. (x,t) € Q to the
conditions:
ci. oo <clel? et ¥ @ eRrRxR
q=0 or g>1, r=0 or r>1 3
(7.3)
l<gq+r<p-1 If

CII. b(Z,g) 1is totally Fréchet differentiable in R x R" and its partial

derivatives 9. b: R x R" » L(®R,R) and agb: R x R" + L(Rn,R) are such that, for

g
(q,r) satisfying (7.3) and ¥ (C,E) € RNX &" s
ab@o | < e el glT, i qfo0
bl < el g™, 1t x40
' R The case ; = 0 will be understood as b = b(u) (not function of Vu), and the

case q =0 as b = b(Vu) (not function of wu).

In this case, we take as spaces V and H the usual Sobolev spaces

Ve Sp—— PSR : ; o




7.2

vewP@ , 2<p <o
(7.4)

1= 1.2

Then, with the conventions of Section 2 in force, the model problem (7.1) assumes
the following form:
Find u € W such that

g% + A(u) = f , f given in V'
(7.5)

u{0) = u s ug given in LZ(Q)
where A: V > V' 1is defined by

(Aw),v] = [A; (w),v] + [A,(u),V]

[Al(u),v] = J a(x,Vu(x,t))'Vv(x,t) dxdt (7.6)
Q-

[Az(u),v] = J b(x,u(x,t),Vu(x,t))v(x,t) dxdt
Q

in which g(Vu) is as defined in (7.2) and b(u,Vv) 1is subject to conditions
(CI) and (CIT).
We now proceed to establish the existence of solutions to problem (7.5).
The following two theorems determine fundamental properties of the operator A .
Theorem 7.1. Let A: V -+ U' be the operator defined in (7.6). Then
i) A 1is bounded, ii) A is coercive, and iii) A 1is locally Lipschitz
continuous in the sense that ¥ u,v E'BU(O) ={vev: ||vl| <w, w>o0},

w E V , there is a positive constant C(u) such that

[[A(u)-A(v),wl] < c) llu-v]l| |ilw]l] (7.7
Proof. We shall use the notation a_ = lal © ,
— L)
k., =Jlk)l ., , and || -]| = |-
L@ $5Q L% (@)

i) Applying Holder's inequality, we obtain, ¥ v,w €V

[(a, (v),wl] < | §a,|vv| + klevl"'l} |V |dQ
Q
(p-2)/p p-1
<{ a mes(Q) ||\7v||p’Q + km||Vv|lpJ)}||Vw||P,Q

N1 ORI T e 7 b

=Yy

.
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7.3
a0 < | elvi®|ovl " vlag
i < o mes @PIIR 2 IS el g
Rence, p=2
Al < a, mes@ P [livllf + i liivillP™
p-1-q-r
; +emes@ P, ¥ vev (7.8)

ii) From Friedrichs' inequality, it follows that, ¥ v eLs(O,T;Wi’S(Q)) ,

1 1<s <o,
(vl ® = vl + llov 2
L@, T30, (@) 5+ s+
: f_(cs(s,n) mes(Q)S/n + 1)||Vv||: Q (7.9)
Thus,
2 P q+l r
[a(v),v] > J (aOIVv| + k°|Vv| )dQ - J c|v] |vv]"dq
Q Q o
> a°|lVV|1§,Q +k (1 + P(p,n) mes(Q)p/n) v lIIP
p-l-gq-r
- cmes(Q P I”v!“1+q+r » ¥V vev (7.10)

But using Young's inequality (2.12) in the last term in (7.10) and choosing b

small enough leads to

[A(v),v] > a_|| Vo] g’Q o lIvilP-v,r, ¥ vev (7.11)

where Yl and Y2 are > 0 . Therefore,

-1 YoT
AL, ¢ Pt - s b e )] >
Il il

iii) By the inequality in Rr" [15]
r-2 r-2 r-2
Hx "% x = |y|" %y| < ellx] + [y]} “[x-y|
. (7.12)
c=vr-1 if 2<r <3, c=r~-1 if 3 <r<w
and Holder's inequality, we obtain, ¥ u,v E.Bu(O)C: vV, w&bv,

\ ' | 1A, (w)-A, (v) 1]

| A

a_|V(u-v)| + k_c(p)(|Vu] + |vV|)P‘2|V(u-v)|} | v |dq
Q p=2
2|

J

| A

a_mes(Q P + kmc(p)(Zu)p_ Nu=v]l] Hiwlll (7.13)
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We now use hypothesis (CII). First we observe that

1
{Az(u)-Az(v).w] = I I ghigéyél w d6dQ
Q0

1
J I {ng(g,vg)n + ngb(E,V£)°Vn}w dedQ  (7.14)
Q0

where £=v+6n, n=u-v and 6 € [0,1] . Hence, because of (CII) and Holder's
inequality,
“Az(ui - A, () ,w]]
<[] AeglelH el Inl + e le1%1el™ 90 Jolaoas
o/qg | ¢ r
p-l-q-r 1
; P q+r-1
< (eg * ) mes @ [ e eenll 11wl g
Then, since u,v € BH(O)CZ v,

| 1A, ()-8, )01 | < yu T huv ] ]

l-qer (7.15)

Y3 = (cq + cr) mes (Q) P

Therefore, from estimates (7.13) and (7.15), (7.7) follows and this completes
the proof of the theorem. [J

The next property of A , established below, is crucial, not only in proving
the existence of solutions to (7.5) but in subsequent studies of approximations.

Theorem 7.2. The operator A: V - V' defined in (7.6) satisfies the
following nonlinear G;rding-type inequality:

2
(Aw-A),u-v] > aa | uv]l 2, + o fllu-v]l?

L (O,T,Hi(ﬂ))
- o (u)l|u-v||P' (7.16)
2 LP(Q)

v u,v€B (0) = W& V: Hwlll <u s u> 0}

1,2

Here Hi(ﬁ) = Wo () and oy s al , az(u) are constants satisfying

ao>0,al>0, a2(u)>0.

Proof. We observe that, ¥ u,vE V ,

ik PRSI YT N s i i S ‘g
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(A(w - A(W), u-v] > [A (W) - A (), u-V]
From the inequality in " [15]
(|X|r-'2x - |y|r—2y,x-y) 2_21-r|x-y|r s 2<r<w (7.18)
and (13.9), it follows that
(4, (u)-A1 v),u~v]
> f {% [9u-v) | + & zl"pr(u—v)Ip} dQ
= g o ()
2 2/n -1 2
> ao[l+c (2,n) mes(f) ] Hu-v]l] 2 1.2
L (O,T;Wo’ (1))
1~p{,, p p/n) 7t P
+k 2 [l+c (p,n) mes () ] lu~v]| (7.19)

On the other hand, according to (7.15) and Young's inequality (2.12), for
u,Vv € Bu(O)C v ’
P
b
| Ay =2, ) u=v]| < 2= flluv]®

(q+r-1)p'

" ||u—v||z;(q) (7.20)
P

]
Y5 u
+

Therefore, introducing (7.19) and (7.20) into (7.18) and choosing b small
enough, the desired result (7.16) is obtained. O

Theorem 7.3. For any data f € V' and u°6 LZ(Q) , there exists at least
one solution u €W to problem (7.5).

Proof. Theorem 7.1 confirms that conditions (BI), (BIII) withy =W , and
(BIV) of Theorem. 6.2 are satisfied ((BIII) is trivially satisfied). Condition (BII)
with X = Lp(ﬂ) (G V' and in which V 1is compact (cf., e.g., [1])) also holds
since, by virture of (7.16),

[AW-AM) ,u-v] > -HG, [luv] )
L° (@

¥y uvéeE BU(O)C V , where
L
H(u,y) = 0t2(u)yp s Y 6R+ » p' =p/plp-1)

Therefore, A 1is coercive and W-pseudomonotone from V + V' and, by virtue of
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Theorem 3.1, the assertion of the theorem follows. 0O
Remark 7.1. From the proofs of Theorems 7.1 and 7.2, it is apparent
that the operator A of (7.6) regarded as a map from V 1into V' , is bounded,

o

coercive and locally Lipschitz continuous, and satisfies the Garding-type inequality

2
<A(u)-Av) ,u=> > a a || u-v]| a1 + a1|| u-v|| P
o]

- &2<p>|| u-v|| P’ , ¥ u,vEB (0)CV
P @ P (7.21)

According to Oden [13], A: V -+ V' is necessarily (V-)pseudomonotone. Hence,
from the theory of pseudomonotone elliptic equations (cf. {11]), A 1is surjective
from V + V' ; i.e., there exists at least one solution in V to the stationary
problem

A(w) = f, f given in V' (7.22)
The evolution problem (7.5) possesses at least one equilibrium state for each

fFev .0

8. Sufficient Conditions for Uniqueness

We now proceed to determine sufficient conditions for uniqueness, of
solutions to the pseudomonotone diffusion problem (715).
In the case of monotone parabolic problems, "monotonicity'" =% "uniqueness"
. and this follows from the differential inequality of Carathéodory type:

dlu(e)-v(e) |%/at

I A

0, a.e. t &f[0,1], |u(0)—v(0)|2 = 0 , whose unique solution

2
is Iu(t)-v(t)l 0; u and v are supposed solutions of the problem. This

o
suggests that in the non-monotone case with Garding-type inequality, the possibility

of establishing a differential inequality of the form
d s s
e 18 ®)-v(t) |® < alu(e)-v ()|

| ®aER, 2<s8<>, for a.e. t &I[0,T] (8.1)

lu(0)-v(0)|® = 0




8.2

would be sufficient for concluding uniqueness. Indeed, from Theorem 3 of Olech
and Opial [14], |u(t)-v(t)|s = 0 1is the unique solution to (8.1). We show that

in certain particular cases and, in general, for sufficiently smooth solutions

of problem (7.5), this is the case.
Theorem 8.1. Let u & W be a solution of problem (7.5). Then u is

unique in the following three cases:

i) r=0 and q =1
ii) r =0 and n<p (8.2)
*
B i1i) a_ >0 and u eL”(o,T;wcl,"”(m)

Proof. Assume that u = u(t;f,uo) and v = v(t;f,uo) are two solutions
of problem (7.5) and define n = u-v . As is apparent from (7.19),

<y @)= ()P > aga [ nCo) | :l(sz)+ o |l nee) || P

]

for a.e. t € [0,T] (8.3)

where ao > (0 and al >0 . Thus, from the difference of the equations satisfied

by u and v , we obtain the integral inequality

R T
% [n(‘r)I2 + QoaoIOIIH(T)Ilil dt

[o]

T
| <a,en-a, 0@ ned> ac
0

~

<

a >0, ¥ 1 € [0,T] (8.4)
We now estimate the right-hand side term via the formula (7.14) with
w=n.

i) r=0 and q =1 . In this case we have the estimate

T
' , UO<A2(u(t))-A2(v(t)),n(t> dt

1 2
< j Incey %t

¥ 1 €[0,T] (8.5)

which combined with (8.4) gives the integral inequality

*In this case, the question of existence appears to be open.

o T I R
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E 8.3

T
ln(r)12§ ZcJOIn(t)Izdt , ¥ 1 €[0,T] (8.6)

| But this is equivalent to (8.1) with a = 2cq and s = 2 . Consequently, n =0 .

ii) r=0 and n < p . From the Sobolev embedding theorem (cf. [1, Chap. 5]),

: _ ) wi’p(a) is continuously embedded in CB(Q) = {v EC(Q): v bounded in §} whenever
n <p . Then
V=120, P@IG PO, @) , n<p (8.7)
Let 1 be chosen such that u,v € B“(O)(: V . Then, from (7.14) with w = n

and using (8.7), we obtain, ¥ T € [0,T] ,

T
J<<Az(u(t))-A2(v(t)).n(t2> dt
0

1,1 -1 2
< J ] J c 166, t) [T n(x,t) | “dxdtde
o’o/p 9

| A

1,1 q-1 2
Hc | g¢ed|| %" In(r)|“dede
0/o0 9 L@,

| A

T =
q-1 s s __2p
cqu (joln(t)l dt] » 2<s P <p (8.8)

Introducing this estimate into (8.4) produces the integral inequality

s -1 s/2T s
In(oy |~ < 2e b In(t)|%de , ¥ T € [0,T] (8.9)
0

s/2
which is equivalent to the differential inequality (8.1) with o = [Zcquq 1]

. and 2 < s = sp/(p+l-q) < p . Therefore, n =20 .
-] w]_,oo
iii) a > 0 and u €L (0,T; 5 () . Let u >0 be such that
u,v € Bu(O)C:.ﬁw(O,T;Wi’m(Q)) . Then, from (7.14) with w =1n , we obtain

¥y 1 € [0,T].

T
L)(Az (u(£))-A, (v(t)),n(t)> dt{

1 1 i
f} . < J J J cq'E(XQt)l |V€(x,c)| ln(x’t)’
00’0

+ e 60660 Y Ve, £) [T Tn(x, £) |} n(x,t) | axdede

T
uq+r_1[cqc(2,n) mes(Q)l/n+cr]J Iln(t)ll1 In(t)|dt
0 HE (@)

| A

P N

(8.10)
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Hence, since by hypothesis a, > 0 , we can apply Young's inequality with

constant, e.g., b = Vaoao , to obtain the upper bound for (8.10)
aoao T 2 o T 2
2 w2y ae+ 8] neo e
0 HO(Q) 0

where o = a(l/bz) > 0 . Combining these results with (8.4) gives

2 t 2
In()|“ < a | In(t)|%at (8.11)
]

and, consequently, (8.1) holds with s =2 and n=0 . O

9. Galerkin Approximations

In this section, we study Galerkin approximations of the model problem
(7.5) which are based on an elliptic regularization of (7.5) obtained using
the ideas described in Section 4. We will establish some results on the strong
convergence of such approximations.
For the model problem (7.5), we introduce the corresponding elliptic
regularization (4.2):
e(u_,V)y = (V) + (u (D,v(D) + [A(u),v]
= [f,v] + (uo,v(O)) s, ¥ vVEU (9.1)
where A 1s the operator defined in (7.6). According to Theorems 7.1 and 4.1,
a solution \%:6 U exists to such a regularization for every € > 0 . Moreover,
according to Section 5 , in the sense of V' L(D((O,T)),W_l’p'(Q)) > ug satisfies
the distributional equation .
~eii, + \.xe +A(w) = £ in V'
-eu_(0) +u_(0) = u_ in L2 (9.2)
a(m =0 in 2@
which is equivalent to (5.1), and for any sequence {u€}€>0CZ(l of solutions, there
exists a subsequence, also denoted {ue}c>0 such that, as ¢ =+ 0+ » U converges
weakly to a solution u of (7.5) in the sense of Lemma 5.2 with X = A(u) .

To construct Galerkin approximations of (9.1), we introduce a family of
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subspaces {uh}0<h§1 of U such that i) U]I is finite~dimensional with

basis functions {¢1, Os eees ¢mh} » with dimension m > as h > o' and

ii) U Uh is dense in U . A Galerkin approximation of (9.1) involves seeking
h
- : a function UZ € Uh such that

h * h » h h
e@d)y - ULy + WD ,6, (1) + [AUD,6,]
= [£,0,] + (,0,(0) , k=1,2,...,m (9.3)
The solvability in Uh of (9.3) is assured by Lemma 4.1. Similarly as in

the proof of Lemma 5.1, if {UZ} is a sequence of Galerkin approximate

0<h<1

solutions, it can be shown that there exist constants K K

. 1° K2, and K4, independent

3
h . h

of h, such that [[|Ul]] <, , [}, <k, , |00@| <k, and [f] <k, .

Then, via weak compactness and pseudomonotonicity arguments (as those used in

Section 5), it follows that there exists a function u, and a subsequence, also

h +
} _ denoted {U€}0<h§l , such that, as h >0 ,

Uh —u weakly in V )
€ €
1'12 — u_ weakly in L%(Q)
A(ug)—-\ ()  weakly in V' > (9.4)
PO—u (0)  weakly in L?(@)
/

UQ(T)—'-\ue(T) weakly in L2(Q)

We will now demonstrate that for our model problem (7.5) much stronger
results can be obtained.
Theorem 9.1. Let {u€}€>0C: U be a weakly convergent subsequence of

solutions to problem (9.1) and let u& W be the corresponding weak limit, solution

of problem (7.5). Then, as ¢ - 0+ .

u. > u strongly in V
/e \.xe >0 strongly in L2(Q)
2 (9.5)
ue(O) >u strongly in L7(Q)
uE(T) + u(T) strongly in LZ(Q) )
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Proof. We regard equation (7.5) as holdiang on U and substrace (9.1)
from it. The following orthogonality condition is obtained:
- (ed_, W)y + (u mu_(0),v(0)
+ [uu_,v] + [AGu)-Au),v] =0 ¥ vEU (9.6) ;

According to the a priori bound (5.1)1, there is a y > 0 independent of € ,
. o
such that u, v G.BU(O)(: . Hence, using formula (2.9) and the Garding-type
inequality of (7.16), we see that
2 o
luo-uE(O)I + [u—uE,u-ue] + [A(u)—A(uE),u—ue]

23 luru @)%+ fum-u m|?

+ i

a [lfumu_[1P = o, G || u-u_|| P
17 e 2 € P (9.7)

Next, combining these two results, we conclude that

1 2 1 2
3 lumu @12+ 5 [um-u (0 ]* + a llle-u [P

p|
< az(u)(|u-u€||Lp(Q)+ (u -, (0),u ~v(0))

+ [&—ﬁg,u-v] + [A(u)-A(uE),u—v] + (E&S’;)H - \/E &€|§
¥ vEUu (9.8)

Due to the compact embedding of W in Lp(Q) (cf. Theorem 6.1) and the weak

convergence result of Section 5, (9.5) follows. O

Theorem 9.2. Let {UZ €.Uh} be a subsequence of Galerkin approximate

0<h<1

e Sy

solutions defined by (9.3), converging weakly, in the sense of (9.4), to a solution

u, € U of problem (9.1). Then, for fixed € >0 , as h ~»> 0+

N

. . U
UQ > u strongly in

O . . 2
Uz > u strongly in L7(Q) $

(9.9)

-

UP(0) » u_(0) stromgly in L2@)

x M

GP(T) > u_(T) strongly in L2)

Proof. We follow similar arguments to those given previously. Restricting

(9.1) to Uh and subtracting (9.3) from it, we obtain the orthogonality condition
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eGu-0in, - @ -, + - ,u)
h -
+ [A(ue)-A(Ue),W] =0, ¥ W euh (9.10)

Now, from (5.1); and since I”UEI” <K, ¥ h €(0,1] thereisa p>o0,

1
. independent of h such that Ug,uE G,BU(O)(:‘V . Then, by virture of (2.9) and

(7.16), it follows that

. 2 h+ +h 2
ela -0 E - -ul,d ~0Dy + [ (m-ut ()|

+ [AGu)-AWY) ,u -]

> eld g+ 2 fu -t @)% + L o m-tfm|?
+a |l u vl izm,T;H(ﬁ(m) + oy [flu-u2P
- a2<u>x|u€-u2||i;(Q) (9.11)

Therefore, combining (9.10) and (9.11)
e}&e-ﬁglﬁ +% 1u€(0)-U}€‘(0)l2 +% |uE(T)-U:(T) l2

ol vl iz(O,T;Hi(Q))+ oy lleg-ucI7

< a, (]| uE—UZH i;(Q) + e(ﬁc—sz,ﬁe-ﬁ)H
= Ul a iy + G (-0 e (D-W(D)
+ [AG)-AWD,u W] ¥ W el (9.12)

But, according tu Theorem 6.1, U is compactly embedded in LP(Q) and UZ

converges weakly to u. in the sense of (9.4). Hence, the right side of (9.12) » 0
as h > 0+ and this proves the theorem. {]

We next give an error estimate for the Galerkin approximations of the
regularized elliptic problem (9.1).

Theorem 9.3. For fixed € > 0 , let u, € U be a solution of problem (9.1)

which is the strong limit (in the sense of (9.9)) of a subsequence of Galerkin

h ,
approximate solutions {UE G.Uh}0<hil defined by (9.3). Then the following
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approximation error estimate holds ¥ weuh :
1 h. 2,1 an gD e 12
5 €0 (0= % + 5 Ju (D-u" (D]
hy 2 - hip ~1* *h2
. +aa |l u-ull + 3 llu ~u [T+ Elu U]
ool "¢ "¢ L2(0,T;Hi(9)) £ € e e'H
uhy P’ - 2 12
<opllu Ul ™)+ Cylu (- |7+ cylu Uy
L™ (Q
+ clfluullP" + ¢ 50| (9.13)
€ 4'"e TH :
where Ci’ i= 1,...,4,a0, a = al(al), a, = ocz(T,u) € = €(e) and C = C(C(T,u))
N are strictly positive constants. Here C(T,u) 1is the local Lipschitz continuity

constant of (7.7).
Proof . The estimate (9.13) follows directly from (9.12) upon applying
formula (2.9), the local Lipschitz continuity of A , (7.7), and inequality (2.12). QO

10. Faedo-Galerkin Approximations

We are concerned here with Faedo-Galerkin approximations of the model
pseudomonotone diffusion problem (7.5). We note that this type of approximation
process is not necessarily well-defined for non-monotone parabolic problems: the
corresponding weak convergence is a conditional property. We shall show that
Faedo-Galerkin approximate solutions to problem (7.5) exist and are unique, and
determine sufficient conditions for weak and strong convergence.

Let {Vh}0<h<1 be a family of finite-dimensional subspaces approximating
the space V(= ngp(ﬂ)) in the following sense: (i) {wl,¢2,...,w } denotes
a basis for Vh » with dimension m > as h > O+ s (11) \ﬂ \ is dense in

h
of problem (7.5) is defined as an

V . A Faedo-Galerkin approximation in Vh

absolutely continuous function Uh from [0,T] » V i.e., Uh € CA([O,T]:Vh) s

h ’
solution of the system

+h h
U0, 9>+ D), 4 >=<E® 4> k= 1,2,...,m

(10.1)
Moy = UZ
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for a.e. t € [0,T] and where Uz > ug strongly in LZ(Q) as h ~» 0+. We

observe that if Uh is solution of (10.1), then its time derivative ﬁh belongs

p' . . . ' _ l" e -1,9' P'
to L (0,1;Vh) but not nccessarily to V' = LY (0,T;W ) UL (O,T;Vh)) .
h
We next establish the solvability of problem (10.1).

Theorem 10.1. For each h € (0,1] , the Faedo-Galerkin approximation problem

(10.1) possesses a unique solution lfle CA([O,T];Vh) continuous with respect

to U: .

Proof. The local existence of solutions to (10.1) in CA([O,th];Vh),
th >0, 1is implied by the pseudomonotonicity property of A (cf. Remark 7.1).
Indeed, f € V and A 1is necessarily bounded and demicontinuous from V =+ V'
and these are sufficient conditions for the vector field E(t,g) = (<<f(t),wk;> -
<:A(U(t)),wk:>) from D = [0,T] x Rmh + R to satisfy the Carathéodory
conditions in D . Here UER denotes the coordinate vector of U G.Vh
with respect to the reciprocal basis of Vh .

The uniqueness and continuous dependence on the initial data of local solutions
to problem (10.1) follows from the condition [7]: for each compact set w(CD,
there is a function &, (A Ll(O,T) such that

[F(t,0)-F(t,W) | < g (£) 1 U-W] , (£,0),(t,) € w (10.2)

which is satisfied because A 1is locally Lipschitz continuous from V > V'
(cf. Remark 7.1).

It remains to be proved that the interval of existence [O,th] = [0,T] .
This is a consequence of the coercivity of A from V + V' , as follows from
part (1) of the proof of Theorem 10.2 given below. [

We now proceed to analyze the convergence of the Faedo-Galerkin approximation
process.

Theorem 10.2. From the sequence of Faedo-Galerkin approximate solutions

defined uniquely by (10.1), there is a subsequence, also denoted {Uh}0<h<l » and




————

+
there exist functions u €W and X € V' such that, as h >0 |,

)
Uh———\ u weakly in V
J‘——**u weakly* in ED(O,T;LZ(Q))
(10.3)
A(Uh)-—-—¥X weakly in V'
o (T) —u(T) weakly in L2(R)
and ’
Ju
YT + [X,v] = [f,v] , ¥ v EV
(10.4)
u(0) = ug
Moreover, the limit function u 1is a solution of problem (7.5) (i.e., X = A(u))
provided one of the following conditions is satisfied:
. *h *h .
i) U"EV' ,0<h<1, and {[|U ”[*}O<h_<_l is bounded (10.5)
ii) A: V> V' of (7.6) is V-pseudomonotone - (10.6)

Proof. We follow the usual pseudomonotone method:
(1) a priori bounds, (2) passage to the limit and (3) the pseudomonotonicity
argument.

1) From the proof of the coercivity property of A , (7.11), it is
apparent that A is also coercive from V » V':

@, a (Wit v [vl[[P-v,, ¥ vev (10.7)

Hence, by integrating equation (10.1) with respect to time from 0 to T € [0,T]
and using formula (2.9) and (10.7), we obtain

1,h,.(2 1 ,mh:2
1P| - 4t

T
h
+Y1f v @I P ae - v, 1
0

T
< J ), U (e de
0

T P (T
1 ! b h
<= J ||£(t)||£ dt+-—J Hut )| P ae
p'sP o P g
Then, by choosing b > 0 such that Yl - bp/p >0, 1t follows that the sequence
")
0<h<1

2) With the previous result and the boundedness of A from V + V' given

{v is bounded in V and in Lm(O,T;Lz(Q))
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4o m.“«* T E e bW
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by (7.8), the validity of (10.3) follows via weak compactness arguments and,
then, upon the passage to the limit in equation (10.1), (10.4) is easily concluded.
All of this proceeds as in the case of monotone parabolic problems; cf. [11, Chap. 2].
3) It remains to be proved that, if either (10.5) or (10.6) holds, then
[(X,v] = [A(u),v] , ¥ v EV (10.8)

From (10.1), (10.3) and (10.4), we see that

1a (0,07 + [a®), "1} = 1im (£,07) = (£,4]
h+0 ht0

[u,u) + [X,u)

Lim {[4,0"] + [AQU™),u]}

ht0
Therefore,
Lim (AWM, 0"%u) = - bin (0°-0,0") = - 2 1 P my-u (o |2
ht0 h+0 hv0
<0 (10.9)

Now, by identical arguments to those given in the proof of (5.5), (10.8) follows
from (10.9).and (10.3)1 when assuming either (10.5), and using the W-pseudomonotonicity
property of A: V > V' (cf. Theorem 7.3), or (10.6). This completes the proof
of the theorem.

We next show that condition (10.5) is also sufficient for the strong convergence
of the approximation process.

Theorem 10.3. Suppose the condition (10.5) holds with bound ' > 0 . Then

the subsequence {Uh} of Faedo-Galerkin approximate solutions converging

0<h<1
weakly to a solution u € W of problem (7.5), in the sense of Theorem 10.2, is
such that, as h ~» 0+

h o 2

U +u strongly in L (0,T;L°(R))

h (10.10)

U -+ u strongly in V

In fact, the following approximation error estimates hold ¥ Z € Lp(O,T;Vh):




p'/2

lu@-0"] < Ju-ug] + k@ || w0

LP @
N ' S 1/2
+ K, (Tyu,u ) Nu-21|| v 1€ 1[0,T] (10.11)
h - hi2/p | - hy 1/(p-1)
Mu-U"lll < Ralu -U {7 + K, (Ta) || u-U"]]
) : 370 "o 4 P
- ' 1/p
' + Ko (Tou,u") [[[u-2 ] (10.12)
where p > 0 is a bound for u and {Uh}0<h<1 in ¥V .
Proof. By using formual (2.9) and the G;rding-type inequality (7.16) in

P, ;W P@) , t €[0,T] , it follows that
T . oh h h
J(_u(t)-U (t) + ACu(r)) - AU (£)),u(t)-U () >dt
0

T P
> 2 Ju@-" @12 - 3 Ju -+ aJOn u()-th ey || 9¢

T '
-, (W) ” | u(o)-u" (o) }| P dc]p /p (10.13)
Vo P

LY ()

and, from equations (7.5) and (10.1), the following orthogonality condition holds:

T
J<u(t)-Uh(t) + A@R) - AU, Z(e)>dt = 0
0
v Z€E Lp(,T;Vh) (10.14)
Hence, introducing (10.14) into (10.13) and using the local Lipschitz continuity

property (7.7), we obtain

T
3 1=t @ 17 + oy J oo Pac
0

1, _ h2 _hyp'
<3 lu=tt? + a0 fl o-t" T o
+ {c<u>mu-u“m + ) 6~ir“ln*} w2l
v tef0,T1], V 2 €Lp(0,T;Vh) (10.15)

Therefore, the approximation error estimates (10.11) and (10.12) are implied by
(10.15). Note that the strong convergence of Uh + u in LP(Q) is a consequence

of (10.3),, assumption (10.5) and the compact embedding of  into LP(Q)
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(cf. Theorem 6.1). O
The Potential Case. We conclude this section by showing that if the
bounded, coercive, locally Lipschitz continuous, G;rding-type operator A of
(7.6), is potential in the sense
CIII. A 1is the gradient of sume Gateaux differentiable functionmal J: V- R ,
for which there is a constant Y > 0 such that
I > ¥||vl|P, v vev (10.16)
then, for data
(f’uo) € LZ(Q) x v (10.17)
Uz > strongly in V (10.18)
the Faedo-Galerkin sequence of approximations defined uniquely by (10.1) is
such that
) is bounded in L’ (0,T;V) }

O<h<i (10.19)

{ﬁh}0<h§l is bounded in LZ(Q)
Since L2(Q)C; V' , property (10.19)2 is stronger than (10.5) and, consequently,
the results of Theorems 10.2 and 10.3 are true in this potential case.
We now prove this result and establish the corresponding regularity of

limit functions.

Theorem 10.4. Let the operator A of (7.6) satisfy condition (CIII) and

consider problems (7.5) and (10.1) with data (10.17), (10.18). Then the Faedo-
Galerkin sequence of approximate solutions {Uh}0<h<l is bounded in the sense

of (10.19). Furthermore, there is a subsequence of approximations, also denoted
h

(M gener
sense of (10.10), such that, as h - 0+ .

» converging strongly to a solution u € W of problem (7.5) in the

h . © 0,
U u weakly* in L (0,T;V) } (10.20)

ﬂh — 3 weakly in LZ(Q)




— —

Proof. Let {Uh} be the Faedo-Galerkin sequence defined uniquely by

0<h<1
(10.1), (10.17), (10.18),-§h1ch approximates problem (7.5) with data (10.17), and
suppose that condition (CIII) holds. Then, by replacing wk by ﬁh in equation
(10.1), integrating with respect to time from O to T € [0,T] and, then,
observing that dJ(UR(t))/de = <A@ (£)), 0" (t)> and (£(r),0P(t)) < 1/2]£(t) |2
+ 1/2|f1h(t) |2 for a.e. t € (0,T), we obtain

1 j: [0 2ae + Y @) P < sy + 2 LT) HOIRT
¥ 1 €[o0,T] (10.21)

But, from the boundedness of A as a map from V +~ V' (cf. Remark 7.1),
1 1 .
J(Ul;) =J, 0+ J0<A(SU2),Uho>ds <J+ Jo“ A(sUg)desH U{;H < const.

Therefore, (10.19) is true.

Next observe that from Theorem 10.3, there is a subsequence of approximations

h
10 genaa

v r\Lm(O,T;LZ(Q)) . Hence, Uh——A»u weakly in V (C;.Ll(O,T;V) densely) and

that converges strongly to a solution u of problem (7.5) in

this together with (10.19), is equivalent to (10.20)1. Also {Uh}0<h§1 is
bounded in U (G V densely) and this with Uh——iu weakly in V 1is necessary
and sufficient for Uh——3u weakly in U (cf. [17, Sec. V.1]). Then (10.20)2

necessarily holds and this completes the proof of the theorem. |
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CONCLUSIONS
For the nonlinear evolution problems considered here, we have shown that

coerciveness and W-pseudomonotonicity of A: V » V' guarantees the existence

of solutions of (3.1) whereas condition (8.1) implies uniqueness of solutions.
The elliptic regularization ideas discussed in Section 4 provide a general frame-
work for Galerkin approximations of W-pseudomonotone problems. We have established
criteria for the existence and weak convergence of such approximations in Sectioms
4, 5 and 9 and strong convergence whenever a G;rding—type inequality of the type
in (7.16) holds. More generally, our approximation results in Section 9 apply
to operators satisfying inequalities of G;rding—type. In particular, the
existence and weak convergence of such approximations were proved in Section 4,
5 ad 9 and, from the analysis of Section 9, it follows that their convergence

o

is strong provided A satisfies a nonlinear Garding-type inequality of the form

[A(v)-A(w),v-w] > alllv-wllv - H(y, || v-w|| >
L (0,T;X)

vy v,w€ BU(O) cVv
where a1l> 0, and X is a Banach space continuously embedded in H and in
which V 1is compactly embedded. Also, if in addition, A: V - V' 1is locally
. Lipschitz continuous, we have shown that error estimates for Galerkin approximations
can be derived.
The Faedo-Galerkin method was considered as an alternative method for
constructing approximate solutions. In these cases, coercivity, boundedness and

demicontinuity of A from V » V' are sufficient conditions for existence, and

local Lipschitz continuity from V -+ V' 1is a sufficient condition for uniqueness.

) , As we have seen, the convergence of this method is a conditional property in the

case that A be non-monotone. 1In general, we may conclude the following convergence

results: Let A satisfy the existence conditions for the abstract problem and
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its Faedo-Galerkin approximation: the conditions discussed in Sections 3 and 10. Then
the Faedo-Ga'erkin method is weakly convergent 1f (i) the sequence of time derivatives
of the approximate solutions is bounded in V' , or if (ii) A: V > V' is
(Y-) pseudomonotone. The convergence of the method is strong if (iii) condition
(i) holds and A satisfies a nonlinear G;rding inequality of the type given above.
Furthermore, in the case in which condition (iii) is satisfied, error estimates
are derivable which are compatible with the interpolation theory of finite-elements
in Sobolev spaces [12}, [3].

A fundamental convergence condition for the Faedo~Galerkin method when
applied to W-pseudomonotone parabolic problems is that the sequence time derivatives
of the approximate solutions be bounded in V' . We have shown that this condition
is satisfied whenever A is, in addition, continuous and potential from V -+ V' ,
its potential is coercive, and the data (f,uo)EE H x V. In this potential case,
the convergence condition holds in ffC;V' . Furthermore, the approximate solutions
form a sequence bounded in Lm(O,T;V)C;.V . Then the regularity in time result
"(u,0u/dt) € Lw(O,T;V) x H" holds for the exact solutions of the problem.
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APPENDIX D

A Pseudo-Parabolic Variational Inequality

and Stefan Problem




1. Introduction.
Let A and B be maximal monotone operators and let C be a non-empty

closed convex set in the real Hilbert space H. We shall give existence and

uniqueness results for evolution inequalities (formally) of the form

(1.1.a) u() € € (Gr(Au(e)) +Bu(e)-£(t), v-u(t), 20, vecC,
0<t<T,
(1.1.b) (Au(O)-v0 ,v-u(O))H >0, vecC,
-
. when f ¢ L2(0,T;H) and VO € A(uo) are given. In Section 2 we introduce a

new notion of weak solution of (l1.1) and verify uniqueness when A 1is linear
self-adjoint and B is strictly-monotone. Existence of a weak solution is

. ‘ proved when A 1is strongly-monotone, B 1is a subgradient, and both operators
are locally bounded.

Variational inequalities of the form (1.1) are of interest on their own as

extensions of corresponding evolution equations of Sobolev type (where C=H).
Early work on such inequalities is described in [2]; we mention [6) specifically
as a source of examples of initial-boundary value problems for the pseudo-para-

bolic partial differential equation
1.2) ﬁ%(u-aAu) = kAu
g

with a > 0, k > 0. Such equations arise as models for diffusion, and they pro-

vide an interesting alternative to the classical diffusion equation wherein a=0.
In Section 3 we recall the two-temperature heat conduction model from [3] and de-
1 \ velop a corresponding one-phase Stefan problem for (1.2). Then we show that such
a problem leads to the variational inequality (1.1). This development is parallel

to that of the classical case a=0 which is described, e.g., in [7]. Existence

.
-
'
?

of a classical solution of a Stefan problem for (1.2) in one dimension was given

in [9] by entirely different methods.

- e e
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2. The Variational Inequality.

We denote by L2(0,T;H) the Hilbert space of (Bochner) square-integrable
functions on the interval (0,T) with values in the Hilbert space H. Let
HI(O,T;H) denote the absolutely continuous H-valued functions v whose deriv-

atives g% belong to LZ(O,T;H). Denote the dual of H by H* and recall the

*
natural identification L2(0,T;H) = L2(0,T;H) ; thus we obtain the (dual) iden-

*
tification L2(0,T;H)C;+ HI(O,T;H) by restriction. The derivative

é%: HI(O,T;H) > LZ(O,T;H) is a bounded linear operator which determines the dual

4 *x 2 1 *
operator L:=-(5; :+ L7(0,T;H) » H (0,T;H) by the formula

dv

2
(Lf,v)e-(f,d—t) ,» fELT(OTH), v Hl(O,T;H)
L

The restriction of L{f to H-valued test functions is the (distribution) derivative

df

T Moreover, for f ¢ Hl(O,T;H) we have

(LE,v) = (%{-,v) p *+ (£(0),v(0)) - (F(M,v(M),, Ve 1! (0, T:H)
g

Thus, we can regard "Lf+f(T)" as formally equivalent to the Cauchy operator

'ld_f "
i O

We shall use basic material on maximal monotone operators [1]. Specifically,

recall A < HxH {is monotone if [xj, yj] e A for j=1 and 2 1imply

(xl-xz, y1-y2)H > 0, strictly monotone if in addition equality holds only if

and strongly monotone if there is a ¢ > 0 for which (xl-xz, yl-yz)H >

X1=X2,

2
C”xl-XZHi for all such pairs |[x ]. If ¢: H>R U { +=} 1is proper, convex

373
and lower semicontinuous, its subgradient defined by

Aep(x) = {u e H: (u,y-x)H < 9(y)-9(x) for all y e H]




for x € H 1is maximal monotone. More specifically, if ¢ 1is a non-empty, convex

and closed set in M, 1its indicator function

0 , XxXeC
I (x) =
¢ +. , x¢¢C
is proper, convex and lower semicontinuous, and we have u ¢ dIC(x) if and only

if

x € C: (u,y=-x) < 0 for all ye C .

We shall be concerned with maximal monotone operators A with domain D(A) =H.
That is, A(x) 1s non-empty for every x € H. This is known to be equivalent

to A being locally bounded: for each x € H there is a neighborhood of x omn

which A 1is bounded. This does not imply A 1is bounded in general unless H
has finite dimension or A is linear.
Suppose we are given a pair A,B of maximal monotone operators on the

Hilbert space H, a closed convex subset C of H, f ¢ L2(0,T;H) and

[uo, vol € A. The triple {u,v,w} is a strong solution of (1.1) if
1 2
u,ve H"(0,T;H); we L (0,T;H) ,

(2.1.a) u(t) e C: (§§é£2"+w(t)-f(t), x~u(t))H >0, xe C,

v(t) € A(u(t)) and w(t) ¢ B(u(t)) for a.e. t e [0,T] , and

(2.1.b) (v(0)~v -u(O))H >0, xeC .

0’ *

Note that since u and v are continuoug, C 1is closed in H and A is
closed in HxH, it follows that the inclusions u(t) ¢ C and v(t) € A(u(t))

hold for all t € {0,T]. Also, (2.1) can be restated as




(2.2.a) QLLEQ + w(t) + OIC(u(t)) 3 f(t)

(2.2.b) v(0) + oI (u(0)) 3 vy

in terms of the indicator function.
We shall relax the requirement that v ¢ Hl(O,T;H) as follows. Set

K:z{ue HI(O,T;H): u(t) ¢ ¢, 0 <t < T}. Define a weak solution of (1.1) to be

a triple {u,v,w} satisfying

ue K; v,we L2(0,T;H) ,

v(t) € A(u(t)) , w(t) € B(u(t)) , a.e. te (0,T],
and for some £ € A(u(T)) we have
(2.3)  (Lv+w-£,neu) + (D -u@), 2 By, UO-u(0), , ek .

Note that if {u,v,w} 1is a strong solution then it is a weak solution with

£ =v(T). Moreover we have the following elementary result.

Theorem 1. Let A be continuous, linear, self-adjoint and monotone; let B be
strictly monotone. Then the first two components of a weak solution are uniquely

determined.

Proof: Let [uJ , vj ,w,] be weak solutions for j=1,2. By our assumptions on

j

A we may assume (after modification on a null set) v,6=Au, ¢ Hl(O,T;H) and

S

éj =A(u,(T)). Thus we have

]

v

(LAu1+w1-f,u2-u1) + (A (T),u, (T) -y, (T))H Vg uz(O)-ul(O))H

(LAu2+w2-f,u1-u2) + (Au, (T),u, (T)~u, (T)),

1Y

(vo 14 ul (o) -u2 (0))H M




For any u € HI(O,T;H) we have

(LAu,u) = 1/2((Au(0),u(0)) = (Au(T),u(T)) ) ,

so adding the two inequalities and applying this identity with u=u, -u, gives
(wy-w, , u,~u,) + 1/2(Au(T),u(T)), + 1/2(Au(0),u(0)),, < 0 .
1 72771 2 L2(0,T;H) H H

Strict monotoneity of B shows u, =y, .

Remark. Without additional assumptions on the set C we should not expect any
uniqueness of the third component, w. For example, in the extreme case C={0},
(2.3) is vacuous and we need only choose v,w e L2 (0,T;H) with wv(t) ¢ A(0) and

w(t) € B(0) to obtain a weak solution. On the other hand, if C=H then any

dv
dt

See [5] for such Cauchy problems.

weak solution is a strong solution of the equation +w=f in LZ(O,T;H) with

initial condition v(0) = Vg -

The primary objective here is the following existence result.

Theorem 2. Let C be a non-empty, closed convex set in Hilbert space H. Let
A and B be maximal monotone operators on H such that A 1is strongly monotone
with domain D(A) =H, B is a subgradient, B=.¢, with D(B)=H and o¢(x) >0
for all xe H. For u e C, v

0 0

least one weak solution {u,v,w] of (1.1).

€ A(uo), and f ¢ LZ(O,T;H) given, there is at

Remarks. Since A 1is strongly monotone we may assﬁme it is of the form A+1I.

Thus we wish to replace (2.3) by
(2.4) (L(utv)+w-f,q-u) + (T4, 1 (T)=u(T))y = (uy+vy, 1(0)-u(0))y, nekK.

Proof: For each ¢ >~ 0 let Ié be the Yoshida approximation of the indicator

function I The subdifferential nIé is a maximal monotone Lipschitz continuous

c”




function on H and we have n(w-+12)=nxp+olé . From Theorem 1 of [5] we obtain

a strong solution of the approximating Cauchy problem

@.5) S(a (£ +v () + v (6) + oIS (u (1) = £(b) ,
v:(t) € A(uc(t)) s wc(t) € B(uc(t)) , a.e. te [0,T),

uc(O) =u vc(O) =v_ € A(u

0’ 0 0)’

with u, ,vt € HI(O,T;H) and w, € L2(0,T;H). Taking the inner product with

du

:ﬁ? in (2.5) and using the chain rule (1, Lemma 3.3] give

t duc 2 t 4 e t duc
‘S‘O 'E- H dr + "YO d—.r'(‘p(uc) +IC(uc))d S.Yo(f’.d_t_)l{ dr .

(We dropped the non=-negative term

tdvc dut
.Yo(d: v 3o 97

by monotoneity of A.) Therefore

du du
2 € €
[l +ou_(t)) + If(u (t)) < [If] === + @(uy) +I5(u,)
dt LZ(O,T;H) € C' e L2(0,T;H) de L2(0,T;H) 0 cYo

Recall that

€y = L 2 .
(2.6) Ic(x) = 2:|x Projc(x)lH , XxeHl;
thus Ié(uc(t)) >0 and Ié(uo)-o since u, € C. From ¢(x) >0, xe H, we
obtain
duc
2.7) sup Ju (t) [, + ==l <M
ot & H T4t 200 1w




€
(¥

(2.8) sup I (uc(t)) <M
0<t<T _

where M depends on U, and f but not €. By the Ascoli-Arzela Theorem we may

pass to a suitable subnet (indexed again by &) and obtain

(2.9) ut(t) + u(t) , strongly in H, uniformly in ¢t ,

duc du 2
H (2.10) T T g0 veakly in LS(0,T;H) .

The 1imit u € HI(O,T;H) is continuous so its range is a compact path in H.

Since A and B are locally bounded there is an € such that for 0< ¢ s_co

and t e {0,T]
[vc(t)IH + 'wc(t)ll{ <M.

Thus we may use the maximality of A and B to pass to a subnet (again indexed

by €) for which

(2.11) vc(T) > ¢ weakly in H, and
(2.12) v, >v, e > w weakly in LZ(O,T;H) ,
where ¢ € A(u(T)) and v(t) ¢ A(u(t)), w(t) ¢ B(u(t)) for almost every ¢t e (0,T].

We shall show the triple {u,v,w] 1is a weak solution. From (2.6), (2.8)

follows
2
|u£(t)-ProjC(uc(t))|H < 2eM te [0,T) ,
80 (2.9),(2.10) show u e K. For any n € K we obtain from (2.5)

i (Llug +v,) +w =£,n-u ) + (u (T) +v (1), 1(T)=u_(T)),

N 5
- ("’Ic(“c"“‘“c)LZ(o,T;H) t 04V 0,0 (0)-u (©))y -

- s - .t e -y, a -




T - .

From the definition of subgradient and the inclusion 7 € K we obtain

T
(=0T} (u ), j-u_) > | (@ @)-rLeende >0,
C'e € LZ(O,T;H) S; C'e C

so there follows
(L(uc-o-vc)+wc-f,q-uc)+(uc(T)+vc(T),q(T)-u€(T))H > (u0-+vo, q(O)-uc(O))H .

Using (2.9)-(2.12) and the weak continuity of L, we take the limit as € > 0

in the preceding inequality and obtain (2.4).

Remark. The approximation of (2.4) by (2.5) is an abstract penalty method.

3. A Stefan Problem.

We consider a problem of heat diffusion involving a solid-liquid phase
change at a prescribed temperature. One application we have in mind is the
melting of ice (initially at temperature zero) suspended in areservoir or porous
medium. The novelty in this treatment is that we assume the heat diffusion is

governed by the pair of equations

9
== kap , 8 = ¢=-alyp .
at

Chen and Gurtin [3] introduced such a model for heat conduction in none-simple
materials where the energy, entropy, heat flux and thermodynamic temperature 4
0(x,t) depend on the conductive temperature ¢(x,t) and its first two spatial
gradients. Here the heat flux is determined by the conductive temperature and
the phase is determined by the thermodynamic temperature. Thus @ > 0 in the

region occupied by water and @=0 corresponds to the frozen region.




We describe the geometry of the problem. Let the bounded domain ¢ in R"

be the medium in which the ice/water is suspended and let its boundary JOG consist

of two disjoint pieces, T, and Iy . Set 4=Gx(0,T), where T >0, and note

that its lateral boundary is Bo U B1 , where Bj = l‘j x (0,T) for j=0,1. The

water-region 01={(x,t) € u: 0(x,t) > 0] 1is separated from the {ce-region

20" {(x,t) € : O(x,t) =0} by an interface S which 1s the phase boundary. The

-

unit outward normal on Cys‘.l is denoted by §= (Nx , Nt)’ ix e R®. 1If v(t) 1is

the velocity in R" of the interface at time t, then it follows by the chain
- - £ -

rule that V(t)-Nx+Nt=0 on S. Set n=Nx/”Nx”, the unit outward normal in

n

-
R~ of the lateral boundary of g - Of course n=Nx on Bl’ and §x=0 where

t=0 or t=T.
The problem is formulated as follows. We are given the conductivity k > 0,
temperature discrepancy a > 0, and latent heat b > 0, of the material and a

constant h > 0 representing conductivity across the lateral boundary B The

'
initial thermodynamic temperature Oo(x), x € G, and applied conductive temper-

ature g(x,t), (x,t) ¢ Bl’ are given with ©0.=0 on T .>0 on T and

0 0o’ 0 1’

g8 > 0. The local form of the problem is to find a pair of non-negative functions

0,9 on i for which we have

a9 _ o
3.1 - , 9=¢-alp in nl
(3.2) k%%+bV(t)':= 0 on S
. 9_2 - -
3.3) k So + h{p-g) 0 on I‘l
(3.4) =0 on I‘O
(3.5) 8(,0) = % on G .
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Note that if ©,¢ 1is a solution of (3.1)-(3.5) and 00 > 0, then

(3.6) (a/k) ?,g +0=¢ in u

so it follows that =0 on “0 US. Since g > 0, the maximum principle for
’ the elliptic equation in (3.1) on the region G(t) ={x ¢ G: (x,t) € 01] shows
that ¢ > 0 1in “1 and %%<< 0 on S. Thus Nt <0 on S and G(t) is in-
creasing with t.
We shall show that the problem (3.1)-(3.5) leads to a variational inequality
' | of the form (1.1). Letting HI(G) denote the Sobolev space of functions v in
L2(G) for which all derivatives 5%!- , 1< j<n, belong to LZ(G), we define

v={v e HI(G): v[F =0}. Here V‘P is the trace on the boundary of G; see

) 0
[ [8,10] for details. Regarding regularity of a solution, we assume 00 eV,
®: {0,T] » V 1is absolutely continuous, ¢ € L1(0,T;V), and (c.f. (3.6))
: (3.7) adOt) | ety = o(t) , a.e. te [0,T]

k dt
*
Define the continuous linear B: V » V by
Bu(v) = jk(ﬂ' V—:r)dx +‘Y h(uv)ds , u,veV.
G

"

For a test function v e CB((O,T),V) we obtain

T -— —
j' Bo(t) (v(t))dt =j' K Vo- Vv dxdt +j' h v dsdt
0 3l B
1 1
j’ (-kaoyv dxdt + [k Fo-N vdsde +j’ hov dsdt !
as. iﬂ
f1 B .

0
—S ()tv +S hgv+Sva

b

ad




from (3.1)-(3.4). Furthermore we have

‘YNtv = .y ot SH(Q)N‘. = -
S 9] i
1

*
in the sense of V =valued distributions, where H(s)=1 for s > 0 and
H(s) =0 for s < 0 is the Heaviside function. We can summarize the above
calculations as

d R 1 *
(3.8) E?(O-fbH(G)) + Bo = (hg),, in L7(0,T:V)

"1

where we define

(he), (O = [ hgs,0v(s)ds , vev, ce 0T

1 1

Combining (3.7) and (3.8) we find that the absolutely continuous function
0: [0,T] >V satisfies
d 1 *
(3.9.a3) EE(O*—(a/k)B(O)-+bH(9)) + B(9) = (gh)r in L7 (O, T;V ) ,
1

(3.9.b) e(0) = @ and

o s

(3.9.¢) 9(x,t) >0, a.e. xe G, te [0,T]
If we integrate (3.9.a) and set

t
u(t) ~S 9(s)ds
0

t
£(t) (T +(a/k)B+bIG, = b +5 (hg),. (s)ds ,
0 1

there follows

11.




12,

(3.10) f;(u (a/k)B)u + Bu - £(t) = b(1-H(E)) .

Finally we note that H(u)=H(®) since G(t) 1is increasing fn t, hence,
u(l-H(®))=0 1in ..
The preceding computations show that u e l‘l1 (0,T;V) and it satisfies

u(0) =0,

u(t) >0 in VvV,

(3.11) f;(U(a/k)B)u(t)wu(t) > £(t) in V', and

(o(1+ (a/)BYu(e) +Bu(t)-£(8)) (u(£)) =0, 0 E < T .

Setting C={ve Vi v>0 a.e. in G} we see that u is a strong solution of
(1.1) with A=I+(a/k)B and uo=vo=0; c.f. (2.1). Note that we can trivially
rephrase the material of Section 2 in the H-H* duality instead of the H-H
pairing through the scalar product.

Theorem 1 asserts uniqueness of a solution of (3.1)=(3.5) under conditions
considerably weaker than those leading to (3.11). Theorem 2 establishes existence
of a weak solution to (3.11) which possesses certain additional regularity prop-

erties. These topics will be developed elsewhere by other methods [4,11].
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